Third-party Call Control in VoIP Networks for Call Center
Applications

A. Miloslavski, V. Antonov, L. Yegoshin, S. Shkrabov,
J. Boyle, G. Pogosyants, N. Anisimov

Genesys Telecommunication Labs (an Alcatel company)
1155 Market St., San Francisco, CA 94103
http://www.genesyslab.com

Abstract -- In this paper we discuss the problem of building
third-party call control in a VoIP network based on ITU-T
Recommendation H.323. We will consider a specific case
that could be used in the call center environment. We will
suggest and advocate a solution with H.323 gatekeepers
connected to CTI server via special protocol. The CTI
Server contains all the logic for service execution while a
gatekeeper implements only elementary switching
functions. Some features of the protocol are considered.

1. INTRODUCTION

One of the most important applications of Computer
Telephony Integration (CTI) is the call center (CC) [1].
The key element on which all the software of the call
center relies is a CTI-link containing a communication
protocol between a telephony switch and a computer that is
often referred to as a CTI server. CTI protocol allows the
CTTI Server to monitor and control processing of telephony
calls, i.e., it provides third-party call control. Modern call
centers are comprised of complex and expensive software
called call center applications that provide the processing
of inbound and outbound calls from customers. For
instance, a CC application may include preliminary call
processing by Interactive Voice Response (IVR), routing
the call to the most appropriate operator (agent), assisting
the agent in call processing, managing customer relations,
reporting, etc.

Using emerging Voice over IP (VoIP) technologies
promises to substantially improve the performance of the
call center. At the same time, in order to painlessly
transition from PBX-based to VoIP networks in call
centers one needs to solve certain technical problems, such
as how to substitute these networks without changing other
call center software. In other words, we need to build third-
party call control in VoIP networks in order to provide
PBX-based services, such as call transfer, conferencing,
and automatic call distribution.

In this paper we will consider one of the solutions for
the problem using the example of call center software
developed at Genesys Telecommunication Labs, a wholly
owned subsidiary of Alcatel. We will consider the case of
when VoIP net is based on ITU-T Recommendation H.323

[2].

II. THE PROBLEM

The typical structure of a call center employing CTI-link
is depicted in Fig.1. The key element of the call center is a
CTI-link that connects PBX and CTI Server to provide
visibility and control of the switching domain by the
computing domain. The CTI link makes it possible to
organize call processing in a flexible way. For example,
the processing of an inbound call may involve the
following steps. The CTI Server learns about the incoming
call due to an event received via the CTI-link. Then it
routes the call to an IVR that may collect additional
information about the call and the customer. Then the
Router routes the call to the most appropriate agent to be
processed. The telephony call is transferred along with
related data. During the call processing the agent may use
information from the database (about the call and the
customer), may consult with another agent, organize a
conference or transfer the call to another agent. To initiate
all these PBX-based services the agent usually uses a
special desktop application that, in its turn, exploits the
third-party call control functions. It should be mentioned
that the Genesys CTI Server uses a call model that has
much in common with the SCTA call model [3].

Now we want to substitute the PBX network with the
VoIP network based on the H.323 Recommendation. In
other words we want to build a third-party call control in
the H.323 network which is exactly the same as that in the
PBX network. We should stress the complexity of the
problem that stems from the nature of the networks.
Indeed, the CTI-link assumes centralization, while H.323
is built on a distributive principle.

In relation to this we should mention the work [4]
devoted to building third-party call control in the H.323
network providing CSTA-based interface for applications.
The most general case of H.323 is considered to assume a
high degree of distribution. In particular, the H.323
network can be configured without gatekeepers, and
intelligence is distributed over all endpoints. For
“centralization,” to monitor and control calls a new
element called the “Marshal” is introduced. It plays the

- —
EE) [T CTHink ==
LEr "
ustomers
phone PBX
LAN

Fig. 1. Call Center Environment

role of the CTI Server. Each endpoint is equipped with an
additional element called “Deputy” which connects with
the Marshal. Deputies inform Marshal about a call’s
progress and operate on its behalf (e.g., initiate a
connection). This solution requires an additional protocol
“Marshal-Deputy”, which makes an H.323 configuration
more complicated. It scems that this approach faces some
severe difficulties since some important scenarios (€.g.,
conferencing) are still not developed.

Fortunately, in less general cases where we can choose
the configuration of the net (e.g., in the case of a call
center) we can find less complex solutions. The natural
candidate for the central element is a gatekeeper that in
some configurations (the gatekeeper routed mode)
possesses all information about call signaling, call control,
and supplementary service processing. However endowing
a gatekeeper with CTI Server functionality is not a good
solution because it will result in a complex and inflexible
gatekeeper implementation. Moreover, it is not clear what
to do when there are several gatekeepers in the network.

A more reasonable approach is to move CTI Server
functions into a special server connected to the
gatekeeper(s). The one example of this approach is the
concept of “thin gatekeeper” developed within Dialogic
[5]. According to this approach a gatekeeper is connected
to a special server via CSTA protocol. This solution
assumes that the gatekeeper understands and operates in
accordance with CSTA protocol.

At the same time, notice that CSTA has been developed
to connect switching and computing domains [3]. In fact,
CSTA provides a copy of the switching call model in the
CTI Server. Moreover, it keeps these call models
consistent using a request/event mechanism. In our point
of view this solution is still complicated because in the
VoIP network there is no longer any boundary between the
switching and computing domains. Everything is in the
computing domain and it is reasonable to have only one
call model rather than two.

III. SOLUTION

In this paper we suggest a configuration where all
service logic is placed in the CTI Server while gatekeepers
perform more elementary operations.

A. Architectural environment

Traditionally, CTI protocols were largely vendor
specific, thus forcing CTI software vendors to develop
separate software modules for ecach switch model. A
number of protocols were proposed as potential standards
for CTI links, such as CSTA [3], MGCP/Megaco [7] and
newer revisions of TAPI [8]. Unfortunately, such attempts
at such CTI protocol standardization are not likely to
produce compatible implementations. It is easy to see that
any non-trivial CTI software suite has a need to maintain
an accurate replica of the switch state, which in practice
means that the CTT software has to replicate the call model
of the particular switch, as shown in Fig2(i). Any
discrepancy between the actual call model implemented by
the switch vendor and its reverse-engineered replica in the
CTI software causes loss of coherency between the actual
state and its image in the control software. Worse yet,
practically all switch vendors introduce subtle changes to
their call model in successive versions of switch software
(this is unavoidable when new features are added and
programming errors are corrected). Packet-switched
telephony makes call models even more complicated by
replacing centralized switches with a heterogeneous,
distributed switching environment.

One approach to solving the problem of call model
incompatibility would be to standardize the call model
itself, providing a rigid specification for switch behavior.
This, in practice, is a very challenging task because of the
richness of possible call behavior and call control features.
The current generation of telephone switches provides
hundreds of these features to accommodate diverse
customer requirements. Any single standard defining the
switch behavior is bound to be overly restrictive; therefore,
vendors reacting to customer demand will be compelled to
expand it, thus defeating the very purpose of
standardization.

As a result, none of the proposed CTI standards even
attempt to specify a standard call model (beyond some
clementary features), thus leaving the actual behavior of
switches to the discretion of the manufacturer. While
helping to solve the easy problem of CTI message format
encoding and decoding, they leave the complicated task of
switch behavior modeling completely untouched.

In this paper we advocate another approach based on
Simple Media Control Protocol (SMCP) [6] developed
within Genesys Labs. The SMCP solves the behavioral
compatibility problem by providing CTI software access to
the basic switching functions, with no proprietary call
model overlay. In SMCP architecture, a switch vendor

CTI-Server CTI-Server
CTI Server CTI Server
Call Model Call Model
CTl-protocol Thin SMCP Stack
Switch Gall Control
Switch/PBX Software Sty
. SMCP
Switching
Entity
Thin SMCP Stack
Call Model (no call model)

1 1 E

Switching Matrix Switching Matrix

(i) (ii)
Fig. 2. Old and new architectures

not have to implement an elaborate call model, a thin
SMCP protocol stack is sufficient. The PBX call control
functionality can be external and developed separately; see
Fig.2(i1). A switch vendor supporting SMCP could use
third-party SMCP-based PBX call control software instead
of doing costly in-house PBX design or integration. Note
that in SMCP architecture, only one call model is used in
CTI- controlled operation, thus eliminating the problem of
CTTI software and switch call model incoherence.

Since SMCP provides support for fault tolerance, a
fallback to the bundled PBX software provides the same
degree of protection from CTI server failures as the
historical CTI architecture.

The simplicity of the SMCP model allows it to
incorporate functions not generally found in conventional
voice-only call models. Indeed, the call commutation
model defined in this document is in no way specific to
voice, and can be used to control a very wide variety of
call-like interactions, such as analog voice, synchronous or
packetized digital voice, interactive video, chat,
whiteboard or desktop sharing sessions.

A. Summary of SMCP
A.1. Basic notions

SMCP is a protocol that regulates a communication
between two objects — Call Control Entity (CCE) and
Switching Entity (SWE), see Fig, 2(ii). The Switching

Entity is a module that fulfills only switching functions
and does not aware about services. The Call Control Entity
contains service logic and implements it with the aid of
SMCP instructing SWE what to do in order to provide the
service. Thus SMCP is a protocol of a low level that
provides only basic switching functions and does not
contain service logic.

Note that CCE and SWE are abstract modules in the
sense that their physical embodiment depends on the
architecture of VoIP network. For example, if SMCP is
used in an H.323 network, SWE may be implemented as a
Gatekeeper. In an MGCP based network the role of SWE
can be played by a Media Gateway Controller MGC).

The SMCP assumes that the SWE implements an
abstraction of a commutating device allowing separate
control of call legs (call leg is a half of a connection). In
other words, SWE must make sure that externally visible
calls are kept established even when the commutating
device tears down and reestablishes internal connections
between them. Fig. 3. illustrates the voice switch-based
commutator, and Fig.4. shows how the SMCP commutator
model maps to a typical enterprise VoIP configuration.

The call legs are terminated at endpoints and are
associated with physical or virtual ports (there are
situations when endpoints do not have associated ports).
Some ports can be used for support of multiple
simultancous connections. The parts of call legs outside of
a switch or a gateway arc called exterior, connections
between them inside switches are interior. More than two
call legs can be connected together to form a multi party
conversation.

Typically, endpoints can terminate only one call leg at a
time. However, in some cases (for example, call treatment

Call Control Entity

/
/
Switching Entity L

Switching matrix

g
I

End-User Devices

Interior legs

C O
IR

[
c—)
T

Exterior legs B

-

Fig. 3. Voice Switch as a SMCP Commutator

Gateleeper/Spitching Entity Call Control Entity

Y
| — —]
SPSek 4| X svPamx

Gatenay

Extemal call legs /] /

J L J
/ / _/
P interface port / \ intemal call legs /

Fig.4. VoIP System as a SMCP Commutator

sources, such as music-on-hold) a single endpoint can be
connected to multiple call legs. All endpoints have unique
endpoint addresses represented as ASCII character strings;
such strings can be telephone numbers, URLs, E-mails,
etc; the exact naming scheme is application specific. Ports
have unique vendor-specific names.

A.2, Message syntax

As in many other Internet protocols (e.g., HTTP, SIP,
MGCP), SMCP messages are text based, i.c., all messages
may contain only ASCII printable characters, spaces and
tabs. Each line is terminated with the CR-LF sequence (0D
0A hex.) Messages have the following structure:

Message-verb reference-number CR LF
attribute-name: attribute-value CR LF
attribute-value-continuation CR LF

attribute-name: attribute-value CR LF
CR LF

Message verbs and attribute names are strings composed
of letters, digits and minus. Attribute values are arbitrary
strings of printable characters, spaces and tabs. An
attribute value string can span several lines, with
continuation lines starting from space or tab. An empty
line (line containing only the CR LF sequence) terminates
a message. The messages sent by CCE will be referred to
as requests, and messages sent by SWE will be called
events or notifications. Both sides must also send replies in
response to messages. Reference numbers are unique
decimal integer numbers generated by CCE and used to
match replies to requests; all requests and notifications
must have reference numbers.

A.3. Exterior Call Control

The protocol consists of several procedures. However,
in this paper we will consider only the main procedures
related to call control. The other procedures such as
configuration management, fault tolerance management,

encryption, etc. are out of the scope of this paper and can
be found in [6].

The exterior call control commands and events provide a
mechanism for manipulating the endpoint sides of call
legs.

Outbound Calls

For managing outbound calls SMCP uses the following
protocol data units:

CALL Make an outbound call;
BUSY Port is busy;
CALLING Outbound call request acknowledgment;

GOTCA Got call alerting from endpoint;
ANSWERED Call answered;
CONNECTED Connection established.

Outbound calls generally progress through several
stages:

e CCE commands SWE to initiate the connection with a
CALL request.

e If the request is not valid, SWE responds with an
ERROR reply; if the selected port is busy, SWE
responds with a BUSY reply; otherwise the request is
considered valid and SWE allocates a call leg
identifier and returns it to CCE with a CALLING

reply.

e SWE initiates a transport connection to the endpoint,
and sends a Call Setup message to the endpoint.

No Connection

issue CALL request

CALL sent BUSY

CALLING
Vi

REDIRECTED Calling ‘
L

DROPPED GOTCP GOTCA ANSWERED CONNEGTED

issue \L |\ k«

HANGUP CP Recei‘ved [‘ |
EOPPED GOTCA ANSWERED | CONNECTED

L L.
CA Received
DROPPED CONNECTED

DROPPED L

Call Answered

DROPPED
L | CONNECTED

[

(Dropped) (Established}

Fig. 5. CCE State Machine for Outbound Calls

e The endpoint may reply with a Call Proceeding
message to indicate that it accepted further
responsibility for call delivery.

e The endpoint may then reply with a Call Alerting
message to indicate that the call has been delivered to
the end-user device which started alerting the user.

o If the callee answers the call, the endpoint device
replies with a Setup message, thus initiating the
process of establishing a transport connection. SWE
informs CCE about this event with an ANSWERED
notification.

e When a transport connection is established the
endpoint device replies with a Connected message.
After that the call is completely established, and SWE
sends a CONNECTED notification to the client.

e At any time after the CALLING notification, SWE
may inform CCE that the connection cannot be
completed with a DROPPED notification. If CCE did
not send a HANGUP request for this call already, this
request must be sent to release the connection after
receipt of a DROPPED notification.

A diagram of CCE state transitions while performing an
outbound call is shown in Fig. . Note that the connection
from a switch to a directly attached phone set is also an
outbound call in the SMCP call model. Making outbound
calls generally requires specification of a switch or
gateway port, and the additional target address (which can
be for directly attached devices, can contain an E.164
phone number for PSTN calls, or an E-mail address or
URL for VoIP calls). If SWE implements a numbering
plan, the port specification may be omitted and selected
automatically by the target address using the plan's target
lookup table.

Incoming Calls

For managing inbound calls SMCP uses the following
protocol data units:

RING Notify about incoming call;
SENDCP Send Call Proceeding message;
SENDCA Send Call Alerting message;
ANSWER Answer the call.

A typical incoming call scenario is:

e SWE detects the incoming attempt to establish a
transport connection, accepts the transport connection,
and reads the Setup message.

o SWE alerts CCE about the incoming call with a RING
notification.

e CCE may instruct SWE to send a Call Proceeding
message to the calling party with a SENDCP request,
and wait for an OK reply.

CCE may then instruct SWE to send a Call Alerting
message to the calling party with a SENDCA request,
and wait for an OK reply.

When CCE wishes to answer the call, it asks SWE to
perform the transport protocol negotiation with the
ANSWER request, and wait for an OK reply.

SWE informs CCE about success or failure of the
negotiation; if the negotiation was successful the
connection is considered established and SWE sends a
CONNECTED notification to the CCE.

At any time after the original RING notification, SWE
may inform CCE that the connection was abandoned
with a DROPPED notification. If CCE did not send a
HANGUP request for this call, this request must be
sent to release the connection after receipt of a
DROPPED notification.

After receiving any reply or notification pertaining to
the current call leg CCE may command SWE to drop
the connection with a HANGUP request. After
issuing the HANGUP request CCE should wait for
the DROPPED notification from SWE before
assuming that the port is available.

RING

b
—— _Arriving]
i55LE
Psenoce

——{ Sending CF * S;:BECA

oK

o CF Sent, Arrived
"issue
=y BENDCA

REDIRECT -
[Sending CA
issLe

oK .
ANSWER
S 7j A Sert, Ringing
is5LE
P ANSWER

DROPFPED [T Answering

DK
B N
DROFPED
DROFFPED
Hangup
(i)
IGNORED CONMNECTED

Dropped Established

Fig. 6. CCE State Machine for Incoming Calls

A diagram of CCE state transitions while answering an
incoming call is shown in Fig. 6.

Call Release

An established connection may be released by either the
local or remote party. CCE may request releasing the call
leg with a HANGUP request. When the call is dropped
due to an endpoint's action or a transport disconnection,
SWE sends a DROPPED notification to CCE. CCE then
must release the call leg with a HANGUP request. SWE
may reuse the call leg identifier only after it has sent a
DROPPED notification and received a valid HANGUP
request.

A.4. Interior Media Stream Commutation

The interior media stream commutation allows
interconnecting existing exterior call legs in an arbitrary
manner. The connections are established with a MAKE
request and are torn down with BREAK or HANGUP
requests. It is important to note that interior connections
for different media streams related to the same call leg are
different connections, and can be independently
established or torn down.

MAKE - Make Connection Between Call Legs

The MAKE request instructs SWE to connect media
stream(s) from an existing call leg to another (target) call
leg, or to a conference in which the target call leg is
participating. The interior connection can be made even if
exterior connections are not fully established (this may
affect subsequent codec type negotiations). A MAKE
request can only be issued for a call leg that is not yet a
party to an interior connection.

If a target call leg is a party to an existing interior
connection, SWE must perform appropriate actions to
allocate and configure an MCU for the newly created or
expanded conference. GK is also responsible for
establishing the appropriate translation between different
codec types, if applicable.

If the MAKE request is successful, SWE replies with
OK If a DROPPED notification was generated for the
current call leg, MAKE request is ignored (resulting in an
IGNORED reply). If the target call leg was dropped, but
CCE did not yet issue the corresponding HANGUP
request, MAKE should be executed nonetheless (this is
important in case the other call leg participated in a
conference) and no error should be reported.

BREAK - Break Interior Connection Between Call Legs
The BREAK request disconnects a call leg from a two-
party or multi party interior connection(s). Unlike the
HANGUP request, BREAK does not affect the state of the
exterior connections, and merely severs the interior
connection between the specified call leg and the other

parties. If the BREAK request is successful, SWE replies
with OK. If a DROPPED notification was gencrated for
the current call leg, the BREAK request is ignored,
resulting in an IGNORED reply.

B. Third-party service creation

Exterior and interior leg control procedures allow one to
develop different services whose logic is placed into the
CTI Server as in Figure 2 (i1). In particular there may be
standard PBX-based services like Plain Old Telephone
Service (POTS) and complementary services like Call
Transfer, Call Forwarding, Conferencing, Call Hold, etc.
Moreover, we can design specific services that are not
supported by standard PBXs.

In this section we consider the widely used service of
making a call on behalf of a third-party application. The
service is initiated by receiving a request MakeCall(x,y)
and consists of establishing a connection between phone x
and phone y. First, the service process establishes a
connection with the device x using an outbound scheme
(see Section III.A.3). If phone x answers, then the process
tries to establish a connection with the device y also using
the outbound scheme. If this phone also answers, the
process makes a stream connection using a MAKE
request. The scenario of successful connection
establishment is depicted in Fig.7. The service is
performed by a special process that creates separate sub-
processes for legs x and y. The progress of the service
execution is reported to the Application by means of
several events.

IV. CoNcLUSION

In this paper we suggested an approach to the design of
third-party control in H.323 networks primarily intended
for use in a call center environment. This approach is
based on a new protocol called SMCP that connects a CTI
Server with clements of a H.323 network. The main
distinction of this approach is that it contains only one call
model that is maintained by the CTI Server. On the one
hand this approach makes it possible to climinate
unnecessary complexity from the clements of H.323
networks. On the other hand, it gives more flexibility in
creating third-party services for call center operation. For
example we can develop more specific services for call
centers than are allowed by approaches based on
conventional CTI protocols like CSTA.

We should also point out one important issue that may
arise during service design based on SMCP usually known
as a feature interaction problem [9]. In this case, indeed,
there may be undesirable interaction when protocol
messages can be differently interpreted depending on the
services they implement. However, this issue is left for
further study.

Call Control Entity / CTI-Server

Switch Entity

——CALL(x.Ref1)

CALLING (leg=X,Refl)——— >

GOTCP)—————
GOTCAQ)——————————— P

ANSWEREDQQ——————————————

-« CALL(,Ref2)
CALLING (leg=Y,Ref))——

CALL(y,Ref2)

GOTCP(Y)———— |

GOTCAY)————— |

ANSWERED(Y)————

| CALL(x,Ref1)
|— CALLING (eg=X,Ref1)-»

GOTCPOO)———»
GOTCA)——»
ANSWEREDQ)—— -

CALLING (leg=Y ,Ref2)—p|

MakeCall Application

Process

r— TMakeCall (xy)———

EventDialing(G)———

EventOffHook(3)————

—MAKEX,Y ,Ref3)

OK(Ref3)

CONNECTED(Y)———— >

CONNECTEDQQ)—— P

GOTCP(Y)——
GOTCACY) 2 EventRinging(y) ———»
—»
ANSWERED(Y) EventOfHook(y)
CONNECTED(Y) = EventEstablished(y)—»|
CONNECTEDGO)——

EventEstablished(3) ———— |

Fig.7. Scenario of Make Call service

ACKNOWLEDGMENTS

The authors are grateful to David Solnit and Steven
Hamilton for technical help.

[1]
2]

131

[4]

5]
6]

REFERENCES
R . Walters. CTI in Action, Wiley, 1997.

ITU-T Recommendation H323. “Packet-Based
Multimedia Communication Systems”, Geneva,
Switzerland, September 1999.

ECMA-269. Services for Computer Supported

Telecommunications Applications (CSTA) Phase III,
3rd edition, December 1998. See http://www.ecma.ch
N.Oliver, T.Miller, J.D. Smith (Eds) Notes on CSTA
in IP Telecommunications, Working paper by ECMA
TC32-TG11, 15 May, 2000.

M. Robins. Pain-Free Internet Telephony-Powered
CT-Apps, Internet Telephony Magazine, August 1999.
V.Antonov, L.Yegoshin. Simple Media Control
Protocol, Genesys Telecommunication Labs. October
2000. See http://www.genesyslab.com

171

18]
9]

T.Taylor. Magaco/H.248: A New Standard for Media
Gateway Control. IEEE Communication Magazine.
October 2000, Vol.38, No.10, pp.124-132.

IP Telephony with TAPI 3.0. White Paper. Microsoft.
E.J. Cameron, N. Griffeth, Y.-J. Linand, M.E. Nilson,
W.K. Schnure, and H. Velthuijsen. A Feature
Interaction Benchmark for IN and Beyond. In: L. G.
Bouma, H.Velthuijsen, (Eds.) Feature Interactions in
Telecommunications Systems, IOS Press, Amsterdam,
1994, pp. 1-23

