ANSWERING MACHINES DETECTION IN CONTACT CENTERS USING
CONVOLUTIONAL NEURAL NETWORKS

Nikolay Anisimov, Mikhail Olkhovsky, Konstantin Kishinsky

Bright Patterns, Inc.
San Bruno, California, USA

ABSTRACT

This paper addresses the problem of applying convolutional
neural networks (CNNs) to detect answering machines in out-
bound contact centers. For a training data set, we use call logs
and call recordings of an outbound campaign of a real-world
contact center. The data set is processed to extract features
and labels of call samples. The features are represented as
Mel frequency cepstral coefficients (MFCCs) extracted from
initial intervals of call recordings. The convolutional neural
network comprises two convolutional layers, two max polling
layers, and two fully connected layers with sigmoid at the
end. The model demonstrates about 94% accuracy, which
corresponds to the industry standard. Some future areas of
improvement for the method are identified.

Index Terms— Outbound dialing, AMD, deep learning,
classification

1. INTRODUCTION

Customer service has become the main business differentiator
in this modern, highly competitive economy. Ideally, every
business dealing with customers should have a multi-channel
customer contact center. In fact, customer care and contact
centers are forming a new and very important industry in the
world. Indeed, according to a recent study, more than 5 mil-
lion Americans work in contact centers in more than 50,000
locations across the country, representing nearly 4% of the
U.S. working population'. Moreover, 14.5 million call center
agents work worldwide [1].

Outbound dialing is an integrated and important part of
contemporary call and contact centers [2], enabling busi-
nesses to contact their customers pro-actively [3, 4]. There
are many useful outbound applications, such as informing
customers about the readiness of prescription drugs, noti-
fying customers about new goods and services, conducting
political campaigns, and so forth.

Outbound dialing uses a special scenario of a call flow.
Initially, the outbound dialing scenario automatically calls a
customer and if the customer answers the call, the customer is

IReferto http://www.jobs4america.net/facts

connected to an available customer service representative or
agent. This design optimizes the utilization of agents, which
are the most expensive resources of contact centers, by elim-
inating dialing and waiting times, handling busy situations,
and replacing fax and answering machines. Agents are in-
volved in a call only when live customers answer.

One of the challenging aspects of this design lies in dis-
tinguishing answering machines from live customers. In the
industry, this issue is referred to as answering machine de-
tection [5, 6, 7, 8], and it is addressed with a component
known as an Answering Machine Detector (AMD). With an-
swering machine detection, calls accepted by answering ma-
chines (AM calls) and calls accepted by living persons (LP
calls) are not distinguished by a signaling layer and are deter-
mined based on media content only. Fortunately, answering
machines and living persons answer calls in different ways,
and AMD should distinguish them based on these differences.

In recent years, there is a remarkable progress in appli-
cation deep learning models [9] to different areas including
image processing [10] and speech processing [11, 12, 13]. In
deep learning model, Convolutional Neural Networks (CNN)
plays an important role as a power tool for visual recognition
[10]. At the same time, applications of CNN have been suc-
cessively expanding to the area of signal processing with in-
put features in a form of spectrogram [14, 15] and raw wave-
forms [16, 17, 18, 19].

In this paper, we present an approach to answering ma-
chine detection based on machine learning techniques using
convolutional neural networks.

2. STATEMENT OF THE PROBLEM

2.1. Outbound Environment

The typical environment for the outbound dialing of a contact
center is shown in Figure 1. The central part of the environ-
ment is a predictive dialer, a set of components responsible
for creating and monitoring customer calls.

Outbound calls to customers are created by a call gener-
ator that takes the next number from calling lists and deter-
mines an optimal time to make a call to this number. The op-
timal time is determined by a predictive dialing algorithm in

Calling Lists

N
CL1

Predictive dialer Agents
Call Progress Detector

Queue |—> °

(\L fz n
No Answering ;ﬁbandoned ,nl
Busy }(answer /5 machine calls

Figure 1: Outbound dialing environment

AN Predictive
Cln dialing
algorithm

order to keep agents busy and keep abandonment rate within
reasonable borders (e.g., less than 3%). When a new call is
generated, it is monitored by the call progress detector (CPD).
More specifically, CPD detects no-connect situations, such as
busy signals and no-answer.

If, however, the call is answered, the AMD should detect
whether the call was answered by a living person or by an
answering machine. If an answering machine is detected, the
call is dropped or a voice message is left. If the AMD detects
a living person, the call is placed in a queue to wait for an
available agent. If the call waits in the queue too long, it may
be abandoned by a customer who has little patience.

2.2. Heuristic Approach

The algorithm for separating AM calls from LP calls will be
referred to as a Living Person Detection (LPD) algorithm. It
is related to the AMD algorithm but better stresses the impor-
tance of living customers versus answering machines.

In practice, the most popular approach is a heuristic ap-
proach based on the observation that answering machines and
live persons answer a call in different ways [8, 5, 7]. More
specifically, a living person says, Hello, Hi, or Hi there and
then waits for a response. Answering machines respond with
a long sentence followed by an option to leave a message.

In a heuristic approach, a heuristic algorithm checks the
level of a signal at some epoch and makes a decision, as
shown in Figure 2.

AMD detected!
Live person detected!

-
|

- |
>

| |
A

Signal level
Signal level

i
I
Silence 1

Hello Hello, you are calling to ...

oy L& |,
(I) Time (”) Time

Figure 2: Heuristic algorithm

For example, the algorithm could be defined as follows:
If a signal lasts over 3 seconds, it is an answering machine.
Otherwise, it is a live person.

There may be many different definitions, but which defini-
tion is the best? To answer that question, we need to measure
the accuracy of the algorithms.

Table 1. Data set format
Disposition

Filename
57d9814c6fcf43630829¢237.wav
57d88ade6fcf43630826ec26.wav
57d88a026fcf43630826e565.wav
57d88c176fcf43630826f3f6.wav

AM or Voicemail
Product sold

Not interested
AM or Voicemail

3. USING CONVOLUTIONAL NEURAL NETWORKS

The data set for this project was collected from a real call cen-
ter and is represented in the form of a call log. While running
the outbound campaign with AMD enabled, the dialer stored
short recordings for future technical analysis and detection
algorithm improvements. Recording started when the media
connection was established, and recording stopped when a de-
tection algorithm made a decision. The length of each record-
ing varies from several seconds up to 1 minute, depending on
how long the call was in the ringing state. Recordings were
saved as 8 kHz mono WAV files. For each recording, the sys-
tem provided a set of meta-data. A brief description of the
data set is given in the following table.

WAV files are used as a source of features for the model.
A disposition gives rise to a binary label (if a disposition con-
tains Answering then the binary label is 0; otherwise, it is 1).
A connected offset (epoch when a call was answered) allows
for a more meaningful segment without beep signals.

The final data set was cleaned by hand. It contains 3
classes (1 human, 2 - custom answering machine message, 3
some standard answering machine message) with 850 exam-
ples in each class. Dataset was augmented, from one original
example, 20 examples were created sliding 2.5 sec window
around (200 OK) connection event. Thus the dataset contains
51000 examples.

Two examples of recordings with different lengths are de-
picted in Figure 3.

Figure 3: Examples of Call Signals

In Figure 3, the example on the left side represents a di-
aling beep signal with a fixed frequency in the form of a box
followed by a connection event (200 OK) corresponding to
answering the call. After connection, we hear a long uttering
that is typical for an answering machine-type greeting, such
as, Hello, you have reached a residence of X. After the tone,
leave your message. The right example contains a short utter-
ing of the greeting, Hello, which is from a living person.

The most meaningful part of these recordings occurs af-
ter the call answer, where figures show signals with various
frequencies to be analyzed for live person detection.

3.1. Feature Extraction

An audio signal can be represented with the aid of different
types of spectrograms. In this project, we use Mel frequency
cepstral coefficients (MFCCs), which are successively used in
speech recognition tasks. As a tool for calculating MFCC, we
used the Librosa library?.

MFCC of a signal can be found using the following steps:

1. Cut fixed segments of audio signal right after the call is
answered.

2. Frame the signal into short frames.

3. Take the discrete Fourier transform for frames, and find
the periodogram estimate of the power spectrum.

4. Compute the mel-spaced filter bank.
5. Take the logarithm of all filter bank energies.

6. Take the discrete cosine transform (DCT) of the log of
all filter bank energies.

7. Keep the number of DCT coefficients, and discard the
rest (in this project, 60 coefficients).

Figure 4 shows different representations of signals from
Figure 3. In both figures, the z-axis is time and the y-axis is
frequency for upper figure and N of MFCC for lower figure.

10

0.5

0.0

-0.5

-1.0
0.00s 0.63s 1.25s

MFCC

1.88s

2,508

-10
0.0

0s

0.63s

1.25s

MFCC

1.88s

2.5

0s

a4

— =

0 = = 0 =——

Figure 4: Representation of voice signals

3.2. Network Structure

Convolutional neural networks have three main types of lay-
ers: convolutional layer, pooling layer, and fully connected
layer.

The convolutional layer is a set of filters that are applied
to an input field. One filter with size N x M can be expressed
as

N M
fla) =323 wie
i=1 j=1

2Refer to https://github.com/librosa/librosa

It is applied to the input field with a specific stride by x
and y (usually 1 x 1). The convolutional layer captures some
two-dimensional structure on the input field.

The pooling layer is used to reduce the dimensionality of
input data. It takes as input several values and produces one
value. It is also applied with a predefined stride. Usually,
the pooling layer has size 2 x 2, stride 2 x 2, and uses max
function f(z) = max;; x;;.

A fully connected layer is a regular neural network layer.
Its general representation is f(x) = Wz + b, where W is a
matrix of weights and b is a bias vector.

3.3. Implementation
3.3.1. CNN structure

A convolutional neural network that is used as a classifier of
LPD is implemented using a Keras library with a TensorFlow
library at the back end. Keras is a high-level neural network
library that provides a convenient way to implement CNN.
It can be easily switched between TensorFlow and Theano,
enabling fast prototyping. It also has different types of layers
and runs seamlessly on CPU and GPU.

The initial architecture of CNN was inspired by [19] and
the Keras two-dimensional CNN example. We used four con-
volutional layers with softmax at the end. Dropout layers
were added to prevent overfitting of the model.

The neural network has two convolutional layers. The first
layer contains 50 x 6 (50 along frequency and 6 along time).
The second layer has filters 3 x 3. Two last layers are fully
connected layers. The neural network is finished by sigmoid
activation function that produces a binary output. In interme-
diate layers ReLU, the activation function is used.

A grid search was performed to find values for the follow-
ing hyperparameters:

e conv_filters2 number of filters for the second
convolutional layer

e n_dense number of neurons for the first fully con-
nected layer

e g_dropouts dropout rate for first gaussian layer
e dropouts dropout rate for intermediate layers
During a series of manual experiments, batch size and the
number of epochs were tuned.
3.3.2. Data Preprocessing

As mentioned previously, the data for this project contains
a set of audio recordings. The process of feature extraction
comprises the following steps:

1. Cut the fixed length of audio segments around the call
answered. We used 2.5 second segments, 0.5 seconds
before answer and 2 seconds after answer.

2. . Remove segments that are shorter than 1 second, and
add zeros to segments shorter than 2.5 seconds.

3. Calculate MFCC with 60 coefficients, and remove the
first coefficient because it is a measure of signal loud-
ness and it is not very informative for speech processing
tasks. The result is a matrix of 59 x 40.

4. Save arrays of features and labels in different files.

5. Split data into training and testing sets.

As aresult, we got 38220 examples for training and 12780
examples for testing. Both sets were balanced.

o i s i

-1.0
0.00s 5.96s 11.92s 17.87s 23.83s

Figure 5: Audio signal before preprocessing

In Figure 6, the left side shows 2.5 second fragments
around calls answered; the right side shows MFCC without
the first coefficient.

10 59 MFCC

05 44

0.0 29

-05 14

-10
0.00s 0.63s 1.25s 1.88s 2.50s

Figure 6: Audio signal after preprocessing

3.3.3. Training

The model was trained on the training data set and tested on
the test data set. Some regularization techniques were ap-
plied during model training. The first input layer of CNN is
batch normalization. It normalizes the input values at each
batch. After each network layer, the Dropout layer is used.
In this model, Dropout randomly sets its input to zero at each
update during training time, which helps prevent overfitting.
The Gaussian Noise layer is used as a kind of random data
augmentation. It is located before the first convolutional layer.
The Gaussian Noise layer randomly applies Gaussian noise to
its input and it also prevents overfitting. Adam optimizer was
used. A stochastic gradient descent with default parameters is
used as an optimizer.

The model was trained on batches with size 256 during 20
epochs.

Model accuracy on training and test data sets during the
training process is shown in Figure 7 on the left.

Model accuracy Model loss

— wain < 08 — wain
test test

—_—

75 100 125 150 17.5 00 25 50 75 100 125 150 175
epoch epoch

Figure 7: Model accuracy and loss

Model loss is shown in Figure 7 on the right. We can
see that the model for the chosen parameters does not over-fit
data. The final accuracy is 0.945 and loss is 0.186. That is
our accuracy is equal to 94% and corresponds to the industry
standard, see [5, 6, 7, 8].

Examples of model inputs are shown in Figure 8.

~ . .
-+ * &
l i e
e 4 =
8, -
sk - F
. . g i
e £ 1 b T

Figure 8: Examples of model inputs

In Figure 8, examples from the left side of the model pro-
vide maximum output, meaning it is some kind of living per-
sons voice. The examples on the right side produced mini-
mum output and show a generic representation of a non-living
persons voice input. We can see that a live persons voice
is more localized in time and a non-living persons voice has
wider distribution.

4. CONCLUSION

In this paper, we described a method of detecting a living per-
sons voice in outbound dialing campaigns of contact centers.
The method uses a convolutional neural network as a model
for classifying voice signals. As historical data, we used a
call log containing call dispositions and call recordings from
real contact centers. The method showed an accuracy equal to
94% that corresponds to the industry standard. This work is
a first attempt to apply deep learning techniques to detecting
answering machines and living persons. We plan to continue
developing the method by experimenting with the depth of
the architecture, improving data processing procedures, and
considering other performance metrics involved, such as pre-
cision and recall.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

5. REFERENCES

Robert DeFrancesco, “Cloud disruption in the call cen-
ter,” CMS WIRE, 2014.

Noah Gans, Ger Koole, and Avishai Mandelbaum,
“Telephone call centers: Tutorial, review and research
prospects,” Manufacturing and Service Operations
Management, vol. 5, no. 2, pp. 79-141, 2003.

Alexander Szlam and Ken Thatcher, Predictive dial-

ing: Fundamentals, Flatiron Publishing Inc., New York,
1996.

Nikolay Korolev, Herbert Ristock, and Nikolay Anisi-
mov, “Modeling and simulation of a pacing engine for
proactive campaigns in contact center environment,” in
Proceedings of the 2008 ACM Spring Simulation Multi-
conference (SpringSim’08). 2008 Business and Industry
Symposium (BIS’08), Ottawa, Canada, April 2008, pp.
249-255, ACM Press.

“Answering Machine Detection,” Aspect Software,
http://help.voxeo.com/go/ccxml/outbound.cpa.

“Answering Machine Detection,” Twilio, Inc.,
https://www.twilio.com/docs/api/voice/answering-
machine-detection.

TJ Thinakaran, “FAQ: How does Answer-
ing Machine Detection Work?,” CallFire Inc.,

https://www.callfire.com/blog/2008/09/19/faq-how-
does-answering-machine-detection-work, 2008.

“Answering Machine Detection Algorithm,” Cisco,
https://supportforums.cisco.com/t5/collaboration-
voice-and-video/answering-machine-detection-
algorithm/ta-p/3117321, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton,
“Deep learning,” Nature, vol. 521, no. 7553, pp. 436—
444, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., pp. 1097-1105.
Curran Associates, Inc., 2012.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Ab-
del rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and
Brian Kingsbury, “Deep neural networks for acous-
tic modeling in speech recognition,” Signal Processing
Magazine, 2012.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E.
Hinton, “Speech recognition with deep recurrent neural
networks,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2013, Van-
couver, BC, Canada, May 26-31, 2013, 2013, pp. 6645—
6649.

Ian Vince McLoughlin, “Review: Line spectral pairs,”
Signal processing, vol. 88, no. 3, pp. 448-467, 2008.

Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng, “Deep speech: Scaling up end-to-end
speech recognition,” CoRR, vol. abs/1412.5567, 2014.

Zhang Haomin, Ian McLoughlin, and Yan Song, ‘“Ro-
bust sound event recognition using convolutional neural
networks,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2015, Bris-
bane, Australia, April 19724, 2015, 2015.

Pavel Golik, Zoltan Tuske, Ralf Schluter, and Hermann
Ney, “Convolutional neural networks for acoustic mod-
eling of raw time signal in Ivcsr,” in INTERSPEECH,
2015.

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samar-
jit Dasg, “Very deep convolutional neural networks for
raw waveforms,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2017,
New Orleans, LA, USA, 5-9 March 2017, 2017.

Shuhui Qu, Juncheng Li, Wei Dai, and Samarjit
Das, “Understanding audio pattern using convolutional
neural network from raw waveforms,” CoRR, vol.
abs/1611.09524, 2016.

Karol J. Piczak, “Esc: Dataset for environmental sound
classification,” in Proceedings of the 23rd ACM Interna-
tional Conference on Multimedia, New York, NY, USA,
2015, MM 15, pp. 1015-1018, ACM.

