
Speci�cation and Veri�cation of a Self-Timed Token Ring

Protocol

A. Semenov
a�

A. Yakovlev
ay

N. Anisimov
bz

a
Department of Computing Science,

University of Newcastle upon Tyne NE1 7RU, England

fax: +44-91-2228232; phone: +44-91-2226053; e-mail:alex.semenov@newcastle.ac.uk
b
Institute for Automation and Control Processes

Far East Division of the Russian Academy of Sciences

Radio Street 5, Vladivostok 690041, Russia

Technical Report No. 516

Abstract

A reliable self-timed channel, based on a pipeline ring architecture, uses a special-purpose protocol

with prioritised token access. The previous design of a channel adaptor was implemented by speed-

independent circuits but without a strict proof of formal correctness of the protocol. Now we are

planning to redesign the interface by means of recently developed net-based methods and software

tools. This paper presents a compositional technique to construct a labelled Petri net model of this

protocol and describes the results of its automatic veri�cation using Pr/T nets.

Keywords: self-timed circuits, MAC protocol, token ring, pipeline, compositionality.

1 Introduction

Asynchronous circuits are known to be inherently robust to parametric faults and self-
diagnostic for stuck-at faults. A circuit would normally indicate a stuck-at fault by halting at
some speci�ed state, and this can be registered through a simple hardware-controlled time-
out mechanism. Such circuits are inherently modular and signal transparent { the interacting
modules produce explicit acknowledgement (\ack") or non-acknowledgement (\nack") signals.
They can be good candidates for reliable implementation of communication protocols, which
are often asynchronous by their nature.

A few years ago, one of us was involved in the developement of a fault-tolerant asyn-
chronous pipeline ring interface for an airborne computing system [12] (a safety-critical appli-
cation). A communication medium was designed to tolerate up to two faults in any segment
of the ring, thereby demonstrating the advantages of asynchronous design approach. The
choice of a ring architecture, as opposed to a shared bus, was caused by the combination of
functional requirements, e.g.,
exibility of addressing { \selective broadcasting", distributed
arbitration, minimal channel wiring, as well as by the following inherent reliability issue.

�Supported by Newcastle University Research Studentship and ORS award from CVCP.
yPartially supported by EPSRC GR/J52327.
zSupported by the Russian Basic Research Fund (Grant No. 93-013-17372).

. . .

. . .

User User
SubsystemSubsystem

User
Subsystem

Ring
Adaptor Adaptor Adaptor

RingRing

"User Link""User Link" "User Link"

Data-In
Ack-In
Reserve {

Ring Access
Controller (RAC)

Data-Out
Ack-Out

} Reserve

FIFO2FIFO1

User Link
Controller (ULC)

Link with
User Subsystem

Received
Message

Control Signals

Message
to send

99

6 6

(b)(a)

Figure 1: Ring channel structure

Asynchronous circuits are not triggered by the common clock as their synchronous counter-
parts; they are therefore reactive to input signal transitions. This makes themmore vulnerable
to intermittent e�ects, such as noise and glitches occurring on the input lines. Any unspeci-
�ed input change may start a sequence of internal transitions leading to an erroneous state.
Asynchronous interface designs based on a multiplexed bus are prone to such situations [4, 10]
to a much greater extent than point-to-point interconnections used in a ring.

The design reported in [12] lacks one important feature: its protocol has not been formally
proven correct. It is only believed, on the grounds of simulation results, to be deadlock-free
and fair (with respect to its prioritised arbitration mechanism).

We are currently planning to redesign the entire interface on a more systematic basis,
with the use of the up-to-date circuit veri�cation and synthesis tools (e.g. [8, 9, 13]) based
on labelled Petri nets. One of the tasks to be carried out on this way is to construct a
formal Petri net speci�cation of the protocol, which would be amenable for quick changes and
e�cient manipulations to cater for better performance and reliability. This paper is aimed
at showing a way to design a labelled Petri net model for such a (low level) protocol using
a compositional approach, outlined, for instance, in [2]. A closely related issue is protocol
veri�cation. In this paper, we demonstrate how the net model of the channel can be veri�ed
for deadlock-freedom and arbitration fairness. To perform such a checking for a channel of
a scalable dimension without a serious descriptive complexity penalty, we employ Pr/T-nets
and associated analysis tools.

In the following sections we brie
y describe the ring's overall organisation and its protocol
(Section 2), the major elements of our compositional approach (Section 3), the protocol model
construction (Section 4), and, �nally, the protocol veri�cation technique (Section 5).

2 Pipeline Ring Organisation

2.1 Overall requirements

Using the ISO classi�cation for LAN protocols, the token ring under consideration here can
be viewed as a medium access control (MAC) layer interface. Our asynchronous protocol is,
however, di�erent from a a standard MAC layer ring-based interface known as the IEEE802.5
Token Ring [1]. The main di�erence is that our protocol was originally targeted at a self-timed
(totally free from clocking) communication medium. Another important feature is that this
protocol does not allows dynamic "insertion" of users. The users can only switch on- and
o�-line but not inserted.

The overall structure of the system with a ring channel is shown in Figure 1(a). Each user
subsystem is connected to the ring through the local standard bus link (Q-bus in the original
design in [12]).

2

According to the design requirements, the MAC layer channel was made transparent to
its users. That is, the network layer protocol entities should be able to communicate knowing
virtually nothing about its actual implementation. Even most of the ring's fault-tolerance
service was meant to be \hidden" in the MAC layer. It included fault-detection, localisation
and self-repair procedures that were invoked with respect to the faults in the ring wires and
in the channel adaptor circuitry.

In this paper, for the sake of clarity, we will omit the modelling and veri�cation of the fault
tolerance mechanisms of the ring channel. We will focus on the main protocol functionality,
the ring access procedures, analysing their safety and fairness properties. Thus we will assume
that all fault detection and recovery procedures are abstracted away and both the medium
and all adaptors are fault-free.

The higher (network) layer protocol is assumed to be implemented in the user modules,
which would exchange messages via their adaptors. Eachmessage consists of a header, message
body and a tail. The header contains information on the message priority and type, the
recipient addresses, the sender address, and the message length. The tail contains a checksum
of the message. The required transfer modes are one-to-one and one-to-many. Message
transmission has to ensure that the reception (transmission) by the adaptor at the user link
and the transmission (reception) in the ring channel are \decoupled" in time. Messages must
therefore be bu�ered in the adaptor. This is also to enable user subsystems with local clocking
to access the channel.

The basic structure of the ring adaptor is shown in Figure 1(b). It consists of two con-
trollers, the user link controller (ULC) and the ring access controller (RAC), and a pair of
FIFO bu�ers. The FIFOs can be designed in a self-timed way (see, e.g., [13]). The design of
a link controller is essentially application dependent and is also not discussed in this paper.

Data is transmitted between adaptors in half-bytes using a self-timed, "optimally bal-
anced" code C3

6 [11] using the four-phase, Return-to-Zero, handshake signalling. Each half-
byte is acknowledged in a pipeline manner through the Ack wires.

Interaction between RAC and ULC. The RAC is reset to the initial state by its user
via one of the control signals. Another control signal is responsible for setting the RAC to the
mode called \System Manager" (SM) , which enables exactly one of the adaptors in the ring
to generate the initial token. The aim of this action is to start the �rst channel-acquisition
procedure in the ring. In addition, there are some wires between the RAC and ULC, as well as
Reserve wires the ring, that are used in fault diagnosis, recovery and signalisation procedures
{ they can be ignored in this paper.

Interaction between RAC and FIFOs. The pair of internal (for the adaptor) nine-bit
data buses, supported with two handshake pairs (we use bundled data here for simplicity,
which seems to cause no problems if the wire delays are properly controlled at fabrication),
connects the RAC to the FIFOs. Thus data is sent between the FIFOs and the RAC in bytes;
the ninth bit is used for tagging the end of the messages while they are in FIFOs (either for
sending or after having been received).

2.2 Basics of MAC layer protocol

As stated above, our protocol layer is a medium access control (MAC) layer (possibly a
sublayer of the link layer) of a LAN with a ring baseband channel. The primary service this
layer has to provide to the network layer is reliable transfer of a sequence of message bytes
originating in a sending user subsystem, via the ULC and bu�ered in FIFO1, to one (or more)
receiving user(s), via its (their) ULC(s) and bu�ering in FIFO2. This structuring of the link
layer assumes that the ring channel will e�ectively consist of a chain of RACs that are capable
of getting message bytes from FIFO1 (in bytes) and from their input ring channel port (in

3

half-bytes), and of putting them to their output ring channel port 1 (in half-bytes) and to
FIFO2 (in bytes).

To start transmitting data, an RAC must �rst bid for the channel using a token access
method with priorities. When arbitration is won, the RAC becomes the ring's \master" and
can transmit its half-bytes into its output channel. The transmission of data is essentially
an asynchronous pipeline process, such that each half-byte advances to the next RAC in the
ring as soon as a free space is available for it. This is ensured by handshake synchronisation
between the transmitting and receiving RACs in each ring segment.

The transmission mode is �nished by the \master" after it has determined the end of
the message. The message structure is, therefore, not important for our purposes. We will
distinguish only �ve types of data allowed on the ring: tokens M1, M2, M3 (for bidding
process); token M4 indicating the end of transmission mode; and data token. The meaning
of each token can be understood from the next subsection.

2.3 Channel acquisition protocol

The bidding process uses a dynamic priority increase mechanism (for \fairness"). Its verbal
description follows below.

� At the start, after a \major reset" in the system, the System Manager (SM) issues token
M1. In subsequent operation, the current master becomes a source of the initial token M1.
It generates M1 immediately after the ending half-byte of the last transmitted message.

� Each RAC, starting in the \idle" mode, upon receiving M1 from its input channel,
checks if there is a request from its FIFO1 to transmit a message. If there is no such a
request, the RAC remains \idle" and simply issues M1 to its output channel, allowing the
token to propagate further. If the request has been registered, the RAC issues, �rst, tokenM2
and then a half-byte with its priority value N , extracted from the �rst byte of the message to
be sent. It also changes its mode to \bidder" in the competition.

� If a RAC, being in the \idle" mode, receives M2 and then a half-byte with the current
maximum priority value Nin, it becomes an \observer" if no request has been registered, and
transmitsM2 and Nin. If, however, the request is set on, it becomes a \bidder", issuing M2
and followed by the priority value Nmax, which is equal to the greater of the following two:
its own value N and the value Nin arrived from the channel (current maximum). If the RAC
being in the \observer" mode receives M2 and Nin, it remains in the same mode and passes
M2 and Nin to the channel.

� If a \bidder" receives M2 and Nin from the channel, and its priority N is less than Nin,
it remains \bidder" and passes M2 and Nin, whereas if Nin � N it enters the \master" mode
and issues token M3, after which it immediately initiates message transfer from its FIFO1 to
the channel.

� If an \observer" or a \bidder" receives M3 it becomes a \recipient-observer" or
\recipient-bidder", respectively, passes M3 to the channel and activates its reception opera-
tion. The RAC which has become the master of the ring, upon receiving M3, also becomes a
\potential recipient" of its own message (for error-checking purposes), therefore an intrinsic
concurrency, between transmission and reception, is implied by the protocol inside the ring
master.

The channel acquisition is completed when all the RACs in the ring are in one of the
following three modes: \master-receiver", \recipient-bidder" and \recipient-observer". Two
recipient modes are distinguished to indicate a recipient which has a pending request for the
channel but whose priority has been insu�cient to become the master in the last competition.
To avoid starvation, the protocol uses a dynamic priority increase mechanism relative to the

1Further, we use terms \input channel" and \output channel" for brevity.

4

priority that is initially speci�ed in the message2. The \master-receiver" option is introduced
with the aim to allow the master, when transmitting a message in a broadcast (one-to-many)
mode, to address itself. Further we will assume that the ring operates in broadcast mode
only.

It is easy to estimate the worst case in which any module may stay a \recipient-bidder"
until it becomes \master". If the total number of modules in the ring is n and the number
of priority levels is m, the largest possible number of channel acquisitions before a module
acquires the medium is n+m�3. Of course, in this estimation we assume that the arbitration
element inside every module is \locally fair", i.e. it does not ignore the pending request of
the module when the \polling" token arrives.

3 Compositional approach to protocol modelling

3.1 Basics of compositional approach

Communication protocols are inherently compositional and the token ring protocol is not
an exception. We can clearly identify modules (adaptors) as communicating entities which
perform service required from the protocol. Adaptors can then be designed hierarchically so
that at the bottom level modules use only primitive actions. One can easily identify certain
features in the protocol that pertain to its compositionality.

- A system consists of a number of entities which correspond to di�erent layers in the standard
OSI model [5] or may play an auxiliary role, maintaining the work of the others. The
entities are interconnected, according to the reference model, through service access
points.

- An entity is usually a complex module which, in turn, consists of a number of internal
modules { procedures. A procedure normally performs one protocol function. Thus an
entity is built from the procedures which are composed together using special rules.

- A procedure has its own internal structure which is constructed from primitives such as
service primitives and data units. If a procedure is still too complex, it can be re-
�ned to the lower level (sub)procedures which are composed together using the same
compositionality rules.

We can thus distinguish three levels of compositionality:

� System level, which represents the overall structure of the system consisting of entities.

� Entity level, where each entity is designed from the procedures combined together using
composition rules.

� Procedural level: Each of the procedures is de�ned using a set of protocol primitives and
data units.

3.2 Compositionality in Petri Nets

Petri Nets (PNs) initially attracted attention of protocol designers due to adequate repre-
sentation of concurrency, existence of formal veri�cation methods, ease of understanding of
graphical representation, etc. Yet, they seem to have been lacking compositionality, which,

2Note that when the dynamic priority level in a \recipient-bidder" has reached its maximum possible value
it will remain constant until the arbitration is won.

5

α: Act2
γ: Act3

 Act2β:
δ: Act4γ: Act1

α: τ

E1 E2

γ βα δ

δ: Act4
γ: Act3

γ: Act1
δ: τ

δγ

δ: Act4
δ: τ

δ

(b) (c)(a)

Figure 2: Illustration of the concurrent composition and abstraction operations.

until quite recently [3], has been a major impeding factors on their wider utilisation by pro-
tocol designers. Indeed, an attempt to build a PN for a relatively simple protocol may result
in a very complicated and di�cult to handle model.

Compositional techniques provide a natural way of hierarchical design of a protocol down
to the level where each module can be easily represented by a PN. The composition operations
can be applied automatically, taking the burden to build a complex representation from the
designer. Also, these methods allow abstraction from the details of a particular implementa-
tion, making the veri�cation process simpler. In addition, if needed, modules can be veri�ed
separately on lower levels, which is often much easier than veri�cation if this module together
with the other modules.

3.2.1 Petri net entities

We will assume that the reader is familiar with the basics of the Petri Net theory. We will
de�ne a labelled Petri Net (LPN) as a PN N in which every transition is labelled with some
label from the set �. Note that one label may correspond to several transitions. We also
de�ne a set of primitives Act = � [f�g, where � is an invisible action.

A PN entity (or entity) is a pair E = hL;�i, where L is an LPN and � is a �nite set
of labellings called access points. Each access point
 : T ! M(Act), where T is a set of
transitions on L and M(Act) is a multiset of communication primitives together with an
invisible action � .

Each access point de�nes which of the transitions are observed from this access point and
how the entity can communicate. A transition may be visible from one access point and
invisible from another (if it is labelled with �).

Graphically, entities are represented as boxes with access points and lines denoting connec-
tions between entities. Each of the entities is later re�ned into an LPN, where each transition
is multi-labelled by elementary names preceded by the access point name.

There are two main operations de�ned on the entities composing them into one LPN for
future veri�cation:

� Concurrent composition, is a parallel composition of two PNs L1 and L2 with synchronisa-
tion performed on transitions provided that they are visible through the access points
� and �. The visibility of the transitions of the resulting entity through the remaining
access points, denoted as
̂, is de�ned as a multiset of the sum of their labellings.

� Abstraction. A constructed entity may contain redundant access points. The abstraction
operation removes the redundant access points from an entity and yields a new entity
with only remaining access points.

We illustrate operations of concurrent composition and abstraction using simple entities
given in Figure 2(a). Figure 2(b) demonstrates the concurrent composition of entities E1 and
E2 and Figure 2(c) illustrates the abstraction operation E removing access point
.

6

3.2.2 Petri net procedures

It is not always convenient to represent an entity by an LPN. The LPN representation may
be too big and complicated which makes its understanding di�cult. In the real life protocol
descriptions, a complex entity is usually represented as a composition of procedures. This
approach can be naturally applied for describing entities within our framework.

A procedure has same access points as the enclosing entity. In addition, in order to connect
procedures themselves, each procedure should have some information about its states. The
information about the state of procedure is formalised in the notion of macrostate. A macro
state is de�ned as a set of reachable markings S = fM1;M2 : : :Mng such that each marking
Mi contains only one marked place.

We say that a PN is in a macro state if its current marking M belongs to S. Each
procedure is de�ned as a tuple D = hN;�;�i, where N is a PN, � is a set of access points and
� = fh; l; rg is a set of head, tail and reachable macrostates respectively. Thus a procedure is
de�ned as an entity equipped with a set of states instead of a single initial marking. These
states carry information for further composition of procedures into an entity.

We require new rules to compose procedures. To obtain an entity from a set of protocol
procedures we need the following composition operations on the procedural level:

- Sequential composition, which composes two PNs together by merging the tail macrostate
of the �rst PN with the head macrostate of the second one.

- Parallel composition, which simply puts two PN together without synchronising them.

- Iteration, which merges tail macrostate of a PN with its own head macrostate.

- Disabling, which merges each reachable macrostate of the �rst PN with the head macrostate
of the second one. Thus D2 can start from any reachable state of D1.

- Transforming to entity, which prepares a composed entity for the system level composition.
It is possible when the head state of the procedure has only one marking.

Each procedure can be re�ned as a LPN. If the procedure is still too complex to handle,
there may be additional level(s) of subprocedures which are composed following the same
rules. At the bottom level (sub)procedures are re�ned into simple LPNs.

We will apply the above framework (its more formal description can be found elsewhere [2])
to the design of the asynchronous token ring protocol.

4 Protocol De�nition

Let us assume for simplicity that there are only three adaptors connected into the ring and
that there exist only three levels of priority: high, medium and low. It is easy to see that such
a model can be extended to an arbitrary number of adaptors and priorities without loosing
any important properties.

4.1 Architecture

The general architecture of the token ring was given in �gure 1. Each adaptor is connected
to its left- and right-hand side neighbour and to the user. The connections with the user
are organised through two FIFO modules (FIFO1 for sending information and FIFO2 for
receiving information). Both of the FIFO modules are able to process one byte at a time.
In our analysis we will assume that there exists an additional bu�er (possibly as a part of
the FIFO module) which converts the incoming stream of half-byte data into the byte stream

7

β1 α2 β2 α3 β3

Channel
Access

Control

Rcv Snd

Ack

Channel
Access

Control

Rcv Snd

Ack

FIFO 1 FIFO 2 FIFO 1 FIFO 2

Channel
Access

Control

Rcv Snd

Ack

FIFO 1 FIFO 2

α1

S1 R1 S2 R2 S3 R3

Figure 3: System level description of the token ring protocol.

for the user and performing the reverse operation for sending the data. For our purposes we
therefore consider FIFOs as being able to receive a half-byte data stream.

Following the above description of the protocol architecture, each adaptor has access points
� and � for connection with its neighbours. Si and Ri denote access point to the protocol's
service. We assume that the service provided by each entity is always consumed by the user
and the user always produces another request for service. Hence, access points Si and Ri can
be eliminated by the abstraction operation for the purposes of verifying this protocol.

The entity level description of each adaptor is given in Figure 3. There are six entities in
the protocol: FIFO1, FIFO2, Channel Access Control (CAC), Receiver (Rcv), Sender (Snd)
and ACK. For simplicity we will denote several access points with close semantics as one
access point depicted as `barred' box. The CAC entity is responsible for the bidding process.
Therefore, in order to verify correctness and fairness of the protocol we are primarily interested
in the veri�cation of the CAC entity. It is connected to Sender and Receiver entities which are
responsible for communication with the neighbours of an adaptor. Sender and Receiver are
connected to the FIFO1 and FIFO2, respectively, to facilitate independent data transmission
and reception. When a user issues a request to CAC it starts bidding for channel access. CAC
issues necessary primitives to Sender to send appropriate tokens and \listens" to primitives
from Receiver. When the bidding process is completed, CAC initiates data transmission and
reception (when bidding was won) or data \passing", i.e. reception and transmission further
along the ring (when bidding was lost). Sender and Receiver issue necessary primitives to
CAC to signal the end of each process. The Ack entity is responsible for maintaining the
self-timed communication between the adjacent adaptors (in a pipeline fashion).

The CAC entity has access points connecting it with with FIFO 1 and Receiver and
Sender. In addition to the access points mentioned above, the Receiver entity has an access
point connecting it to the access point to the left-hand side neighbour and the Sender entity
has an access point ensuring the transmission of the data to the right-hand side neighbour.

4.2 Entity level

Entities FIFO1, FIFO2 and Ack are straightforward to re�ne into LPNs. In the real protocol
Receiver is also responsible for decoding the address in the beginning of the message. We

8

Idle

Idle

Observer Requested No request

toRcv toSnd

toFIFO1

toFIFO1

toSnd toSndtoRcvtoSndtoRcv toRcv

toFIFO1toFIFO1

Figure 4: Entity level representation of the CAC entity.

(a) (b)

toFIFO1

toRcv toSnd

RcvM1 SndM1

Visibility:

Idle

Idle

Req

toFIFO1

toCAC β

t1 t2 t3

t4

SndM1 SndM2 SndM3

SndM4

SndDat

t5 t6

t7

t1 t2

toRcv: t1

toSnd: t2

toFIFO1: t2
Visibility:

toCAC: t1, t2, t3, t4, t7

β: t1, t2, t3, t4, t5

toFIFO1: t5, t6

SrtSnd

EndSnd

Figure 5: Re�nement of the Sender entity (a) and No Request procedure (b).

are considering only the broadcasting one-to-all mode and therefore can abstract from the
realisation of address decoding. Since we are also not concerned with fault detection and
recovery procedures, the Receiver and Sender entities are re�ned into simple LPNs. An
example of the re�nement of Sender entity is given in Figure 5(a). All transitions are labelled
with some communication primitives. Transitions are visible from di�erent access points. For
example, transition t5 labelled with the primitive SndDat (send data to the right-hand side
neighbour) is visible through access point toFIFO1 and � but not visible through toCAC
access point.

However,CAC entity is still too complex and requires further decomposition on procedural
level. The decomposition of CAC entity is given in Figure 4. Two procedures correspond to
the adaptor being in \idle" (No request)) and \recipient-observer" (Observer) modes. The
third procedure (Requested) corresponds to all modes and operations of an adaptor when it
has registered a request from its user.

4.3 Procedural level

We need to re�ne procedures comprising the CAC entity. The procedures are simple and we
do not need to build additional levels of subprocedures. Re�nement of procedure No request

is given in Figure 5(b). This procedure is connected to the Sender, Receiver and FIFO1.

9

RcvM1

Req

SndM2

SrtRcv

SrtSnd

SndM2

RcvM2

RcvM3

SndM3

Req

SndM2

RcvM2

RcvM2

SndM3

SndM4

RcvM4

RcvM3

SndM3

RcvM2

SndM2

t1 t2

t3 t4 t5

t6 t7

t8

t9 t10

t11

t12

t13 SrtRcvIncPri

t15t14

RcvM1

SndM2

toSndtoRcv

toFIFO1

Visibility:

SrtSnd

RcvM4

SndM4

toSnd: t1, t2, t3, t4, t5, t6, t7, t8, t10, t11, t12, t14, t15

toRcv: t1, t2, t3, t4, t5, t6, t8, t9, t11, t12, t14, t15

toFIFO1: t1, t2, t13

Idle

Idle

Pin > P

Pin = P

Figure 6: Re�nement of procedure Requested.

From FIFO1 it receives Req primitive. Note that one transition is labelled with a multiset
of primitives. The re�nement of procedure Requested is given in Figure 6. Note that in
Requested procedure we can clearly identify two branches corresponding to an adaptor being
in \master-receiver" and \receiver-bidder" modes. For simplicity we have drawn additional
conditions on the priority as conditions on transitions (Pin > P and Pin = P). Readers are
invited to re�ne the third procedure.

5 Protocol veri�cation using Pr/T nets

The compositional approach allowed us to design the protocol in hierarchical manner. After
re�ning procedures on the lowest level, we can perform their composition. The resulting LPN
represents the entire protocol layer which we need to verify.

The ring is a regular structure consisting of an \array" of identical elements. To avoid
complexity of the protocol representation we can use Predicate/Transition (Pr/T) nets [6]
for its representation. This will also allow us to use existing tools, such as PROD [7], for its
veri�cation.

In order to obtain the Pr/T net description of the protocol we, �rst, perform composition of
one adaptor. Obtaining a Pr/T net description from the composition is straightforward. The
resulting LPN will be the basic structure of our Pr/T net. We need to introduce additional
places to represent the token
ow. We add �ve places which correspond to the types of
allowed tokens: M1..M4 and data token. Each token is assigned with an adaptor number hai
representing the fact that the token is enabling actions of that particular adaptor. In addition,
those tokens that are in M2 place are labelled with tuples ha; pi where a is an adaptor number
and p is the priority number.

Each place is then connected to the corresponding transition in the LPN which was formed
by the synchronisation of transitions from Receiver entity. Each of these transitions consume
tokens labelled with the single tuple hai which represents the fact that adaptor a receives an
input (token ha; pi in place M2 indicates that adapter a received token M2 with priority p).
Similarly, these places are connected to the transitions formed by synchronisation with the

10

Master i

Master j

Master jMaster i

<.1.+.2.+...+.A-1.>

<a>
<a>Protocol

Pr/T net

Master

Protocol Req,High i

i

j

Pr/T net

Req,Low

RcvM1

P2

P1

P0

(b)(a)

Figure 7: Veri�cation of protocol properties.

transitions of Sender entity. In this case these transitions produce tokens labelled with ha+1i
{ the number of the \next in row" adaptor.

Transitionswhich are internal to each adaptor consume and produce tokens without chang-
ing the adaptor number but possibly changing other values (e.g. priority level).

Initially there areA tokens in the place \Idle" and a token with the value h1i into place M1.
This corresponds to the initial injection of token M1 into the ring by the System Manager.

The Pr/T-net model of the ring has been veri�ed using PROD [7]. For deadlock detection
we used the \stubborn set" method implemented in PROD. This method builds a reduced
reachability state space (RRSS). Using Pr/T nets gives a convenient way of veri�cation of
arbitrary number of adaptors and priorities in the protocol. For example, adding a new
adaptor is done by adding a token assigned with hA+ 1i into place \Idle" in the initial state
of the protocol. Analysis showed no deadlocks in the model. The reachability analysis (see
Table 1) reveals exponential growth of the RRSS in the number of adaptors and polynomial
growth in the number of priorities in the ring. As the number of adaptors we take the
number of active adaptors in the ring of three, i.e. those adaptors trying to gain access to the
channel. An inactive adaptor is assumed not to have received requests from its user for data
transmission.

We are also interested in some safety and fairness properties of our protocol. We analyse
them by reducing their check to deadlock detection.

Safety property of arbitration. It ensures that the access to the ring will not be given
to two or more adaptors simultaneously. To reduce the problem to deadlock detection we add a
stop-transition to the Pr/T net description of the protocol with the input place corresponding
to a place of the adaptor being in the master state and outputting into a deadlock. This
transition is allowed to �re when there are two tokens in the master state. Analysis of the
ring with three adaptors and three levels of priorities shows that there are no deadlocks in
the net with the new transition, checking 77661 states in its RRSS.

Fairness of arbitration. It shows that a user issuing a request for data transmission
via its adaptor will eventually gain access to the ring. We can check it by composing the
net description of the protocol with the net shown in Figure 7(a) (where transition Master
denotes an adaptor's state transition to master). In the Pr/T nets we need to add a place
\guarding" the change into the master state. This place is marked with A� 1 tokens labelled
with the adaptor numbers. Thus we will prevent the A-th adaptor from entering the master
state, i.e. acquiring the channel, and reaching any further state. If arbitration was unfair, our
composed Pr/T net would not have deadlocks as in this case the inability of some adaptor
to reach the master will be ignored. Analysis shows that the net deadlocks, after exploring
57639 states in its RRSS.

Priority order. It ensures that, if two users have issued requests with two di�erent
priorities before the adaptor having the request with the higher priority receives token M1
or M2, the one with the higher priority will gain access to the ring �rst. This problem can

11

No. adaptors No. priorities RRSS Size
1 1 104
1 2 130
1 3 156
2 1 1050
2 2 2301
2 3 4135
2 5 9204
2 10 30049
3 1 8307
3 2 31404
3 3 84432

Table 1: Experimental results.

be reduced to deadlock detection by performing concurrent composition of nets as shown in
Figure 7(b). Such a composition allows to bring the Pr/T net of the protocol to the initial
marking at which two requests of i (with the High priority level) and j (of the Low priority)
have been issued before the i-th adaptor registers its request, i.e. before tokens M1 or M2
arrive to the i-th adaptor. The right-hand side net orders only the �rst �ring of transitions
labelled with Masteri and Masterj (representing adaptors entering the \master" mode) and
allows their subsequent �ring to occur in any order (thus totally controlled by the protocol
net conditions).

Under the priority conditions set above,Masteri is supposed to �re �rst. This should force
the composition net into a deadlock. Indeed, if, in the protocol Pr/T net, the j-th adaptor
becomesMaster before the i-th adaptor (i.e. the protocol Pr/T net violates the given priority
order), then, in the composed system, place p2 will be marked. This means that there exists a
marking in the system at which both Masterj and Masteri can �re in either order. Since there
are no deadlocks in the protocol Pr/T net, then there must be no deadlocks in the composed
system. On the other hand, if the protocol net does not allow the j-th adaptor to enter the
Master state before the i-th adaptor (i.e. the protocol maintains the given priority ordering),
then the system will (by the property of arbitration fairness) reach some marking at which
only Masteri is allowed to �re. But, if Masterj has not �red yet, the place p1 is not marked
and hence the system must reach a deadlock.

Veri�cation shows absence of deadlocks if the proper access ordering is applied (hii goes
before hji) and reports a deadlock otherwise. Since there can be no two adaptors simultane-
ously accessing the ring (safety property), we conclude that the required order is maintained
in our protocol.

Conclusions

We have demonstrated a compositional approach to designing an asynchronous token ring
protocol. We have veri�ed the labelled (Pr/T) net description of the protocol. The protocol
has been shown to be deadlock-free and having certain properties of fairness of arbitration.
This has not been done in the previous design of the protocol and its asynchronous circuit
implementation.

Veri�cation of the \selective" broadcast addressing method and of the fault tolerance
mechanisms exploited in the ring has been left outside the scope of this paper. We believe
that the use of the compositional approach adopted here would allow us to easily build a
complete model for the veri�cation of those mechanisms. In particular, we would intend to

12

show its tolerance to maximum two static faults (it had originally been designed for). We plan
to address these problems in our future work along with providing an \on-line" veri�cation
of circuits implementing the new version of a channel adaptor.

References

[1] ANSI/IEEE Standard 802.5 Working Group. Token Ring Access Method and Physical Layer
Speci�cations. IEEE, N.Y., 1985.

[2] B.A. Anisimov and M. Koutny. Compositionality and Petri nets in protocol engineering
Manuscript, December 1994.

[3] N.A. Anisimov. An Algebra of Regular Macronets for Formal Speci�cation of Communication
Protocols. Computers and Arti�cial Intelligence,, Vol. 10, 1991, pp. 541{560.

[4] B. Coates, A. Davies and K. Stevens. The Post O�ce experience: designing a large asynchronous
chip. Integration: the VLSI journal, Vol. 15, No. 3, Oct. 1993, pp. 341 { 266.

[5] J. D. Day, H. Zimmermann. The OSI Reference Model. Proceedings IEEE 71 (1983) 1334{1340.

[6] H.J. Genrich. Predicate/transition nets. Advances in Petri Nets, LNCS 256 , Springer-Verlag,
1987, pp. 207 { 247.

[7] P. Gr�onberg, M. Tiusanen and K. Varpaaniemi. PROD - A Pr/T-net reachability analysis tool.
Series B: Technical Reports, No. 11, Helsinki University of Technology, June 1993.

[8] M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky. Concurrent Hardware: The Theory
and Practice of Self-Timed Design. John Wiley and Sons, London, 1993.

[9] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous
circuits. Kluwer Academic Publishers, 1993.

[10] K.S. Stevens. Practical Veri�cation and Synthesis of Low Latency Asynchronous Systems. PhD
Thesis, The University of Calgary, Calgary, Alberta, Sept. 1994.

[11] V.I. Varshavsky, M.K. Kishinevsky, V.B. Marakhovsky, V.A. Peschansky, L.Ya. Rosenblum,
A.R. Taubin and B.S. Tsirlin. Self-Timed Control of Concurrent Processes, Ed. by V.I. Var-
shavsky. Kluwer AP, Dordrecht, 1990 (Translated from Russian; Russian Edition { Nauka,
1986).

[12] V.I. Varshavksy, V.Ya. Volodarsky, V.B. Marakhovsky, L.Ya. Rosenblyum, Yu.S. Tatarinov and
A.V. Yakovlev. Structural organisation and information interchange protocols for a fault-tolerant
self-synchronous ring baseband channel (pt.1). Hardware implementation of protocols for a fault-
tolerant self-synchronous ring channel (pt.2). Algorithmic and structural organisation of test and
recovery facilities in a self-synchronous ring (pt.3). Automatic Control and Computer Science,
Vol. 22, No. 4, pp. 44 { 51 (pt.1), No. 5, pp. 59 { 67 (pt.2), Vol. 23, No. 1, pp. 53 { 58 (pt.3),
1988, 1989 (translated from Russian).

[13] A. Yakovlev, A.M. Koelmans and L. Lavagno. High level modelling and design of asynchronous
interface logic. IEEE Design and Test of Computers, Spring 1995, pp. 32{40.

13

