Specification and Verification of a Self-Timed Token Ring
Protocol

A. Semenov®” A. Yakovlev®! N. Anisimov’?

* Department of Computing Science,
University of Newcastle upon Tyne NE1 TRU, England

fax: +44-91-2228232; phone: +44-91-2226053; e-mail:alex.semenov@newcastle.ac.uk
bInstitute for Automation and Control Processes
Far East Division of the Russian Academy of Sciences
Radio Street 5, Vladivostok 690041, Russia

Technical Report No. 516

Abstract

A reliable self-timed channel, based on a pipeline ring architecture, uses a special-purpose protocol
with prioritised token access. The previous design of a channel adaptor was implemented by speed-
independent circuits but without a strict proof of formal correctness of the protocol. Now we are
planning to redesign the interface by means of recently developed net-based methods and software
tools. This paper presents a compositional technique to construct a labelled Petri net model of this
protocol and describes the results of its automatic verification using Pr/T nets.

Keywords: self-timed circuits, MAC protocol, token ring, pipeline, compositionality.

1 Introduction

Asynchronous circuits are known to be inherently robust to parametric faults and self-
diagnostic for stuck-at faults. A circuit would normally indicate a stuck-at fault by halting at
some specified state, and this can be registered through a simple hardware-controlled time-
out mechanism. Such circuits are inherently modular and signal transparent — the interacting
modules produce explicit acknowledgement (“ack”) or non-acknowledgement (“nack”) signals.
They can be good candidates for reliable implementation of communication protocols, which
are often asynchronous by their nature.

A few years ago, one of us was involved in the developement of a fault-tolerant asyn-
chronous pipeline ring interface for an airborne computing system [12] (a safety-critical appli-
cation). A communication medium was designed to tolerate up to two faults in any segment
of the ring, thereby demonstrating the advantages of asynchronous design approach. The
choice of a ring architecture, as opposed to a shared bus, was caused by the combination of
functional requirements, e.g., flexibility of addressing — “selective broadcasting”, distributed
arbitration, minimal channel wiring, as well as by the following inherent reliability issue.

*Supported by Newcastle University Research Studentship and ORS award from CVCP.
tPartially supported by EPSRC GR/J52327.
!Supported by the Russian Basic Research Fund (Grant No. 93-013-17372).

‘/\‘ Link with
User Subsystem
User ‘ User ;
User Link
‘ Subsystem Subsystem Controller (ULC)

"User Link" Control Signals- ‘ ‘ -

B

[o

Received
Ring Ring o Ring nﬁge Message
Adaptor Adaptor Adaptor

Dataln _] / Data-Out
Ring Access %

AdkeIn Controller (RAC) Adk-Out

Reserve { } Reserve

(@ (b)

Figure 1: Ring channel structure

Asynchronous circuits are not triggered by the common clock as their synchronous counter-
parts; they are therefore reactive to input signal transitions. This makes them more vulnerable
to intermittent effects, such as noise and glitches occurring on the input lines. Any unspeci-
fied input change may start a sequence of internal transitions leading to an erroneous state.
Asynchronous interface designs based on a multiplexed bus are prone to such situations [4, 10]
to a much greater extent than point-to-point interconnections used in a ring.

The design reported in [12] lacks one important feature: its protocol has not been formally
proven correct. It is only believed, on the grounds of simulation results, to be deadlock-free
and fair (with respect to its prioritised arbitration mechanism).

We are currently planning to redesign the entire interface on a more systematic basis,
with the use of the up-to-date circuit verification and synthesis tools (e.g. [8, 9, 13]) based
on labelled Petri nets. One of the tasks to be carried out on this way is to construct a
formal Petri net specification of the protocol, which would be amenable for quick changes and
efficient manipulations to cater for better performance and reliability. This paper is aimed
at showing a way to design a labelled Petri net model for such a (low level) protocol using
a compositional approach, outlined, for instance, in [2]. A closely related issue is protocol
verification. In this paper, we demonstrate how the net model of the channel can be verified
for deadlock-freedom and arbitration fairness. To perform such a checking for a channel of
a scalable dimension without a serious descriptive complexity penalty, we employ Pr/T-nets
and associated analysis tools.

In the following sections we briefly describe the ring’s overall organisation and its protocol
(Section 2), the major elements of our compositional approach (Section 3), the protocol model
construction (Section 4), and, finally, the protocol verification technique (Section 5).

2 Pipeline Ring Organisation

2.1 Overall requirements

Using the ISO classification for LAN protocols, the token ring under consideration here can
be viewed as a medium access control (MAC) layer interface. Our asynchronous protocol is,
however, different from a a standard MAC layer ring-based interface known as the IEEE802.5
Token Ring [1]. The main difference is that our protocol was originally targeted at a self-timed
(totally free from clocking) communication medium. Another important feature is that this
protocol does not allows dynamic ”insertion” of users. The users can only switch on- and
off-line but not inserted.

The overall structure of the system with a ring channel is shown in Figure 1(a). Each user
subsystem is connected to the ring through the local standard bus link (@-bus in the original
design in [12]).

According to the design requirements, the MAC layer channel was made transparent to
its users. That is, the network layer protocol entities should be able to communicate knowing
virtually nothing about its actual implementation. Even most of the ring’s fault-tolerance
service was meant to be “hidden” in the MAC layer. It included fault-detection, localisation
and self-repair procedures that were invoked with respect to the faults in the ring wires and
in the channel adaptor circuitry.

In this paper, for the sake of clarity, we will omit the modelling and verification of the fault
tolerance mechanisms of the ring channel. We will focus on the main protocol functionality,
the ring access procedures, analysing their safety and fairness properties. Thus we will assume
that all fault detection and recovery procedures are abstracted away and both the medium
and all adaptors are fault-free.

The higher (network) layer protocol is assumed to be implemented in the user modules,
which would exchange messages via their adaptors. Each message consists of a header, message
body and a tail. The header contains information on the message priority and type, the
recipient addresses, the sender address, and the message length. The tail contains a checksum
of the message. The required transfer modes are one-to-one and one-to-many. Message
transmission has to ensure that the reception (transmission) by the adaptor at the user link
and the transmission (reception) in the ring channel are “decoupled” in time. Messages must
therefore be buffered in the adaptor. This is also to enable user subsystems with local clocking
to access the channel.

The basic structure of the ring adaptor is shown in Figure 1(b). It consists of two con-
trollers, the user link controller (ULC) and the ring access controller (RAC), and a pair of
FIFO buffers. The FIFOs can be designed in a self-timed way (see, e.g., [13]). The design of
a link controller is essentially application dependent and is also not discussed in this paper.

Data is transmitted between adaptors in half-bytes using a self-timed, ”optimally bal-
anced” code C§ [11] using the four-phase, Return-to-Zero, handshake signalling. Each half-
byte is acknowledged in a pipeline manner through the Ack wires.

Interaction between RAC and ULC. The RAC is reset to the initial state by its user
via one of the control signals. Another control signal is responsible for setting the RAC to the
mode called “System Manager” (SM) , which enables exactly one of the adaptors in the ring
to generate the initial token. The aim of this action is to start the first channel-acquisition
procedure in the ring. In addition, there are some wires between the RAC and ULC, as well as
Reserve wires the ring, that are used in fault diagnosis, recovery and signalisation procedures
— they can be ignored in this paper.

Interaction between RAC and FIFOs. The pair of internal (for the adaptor) nine-bit
data buses, supported with two handshake pairs (we use bundled data here for simplicity,
which seems to cause no problems if the wire delays are properly controlled at fabrication),
connects the RAC to the FIFOs. Thus data is sent between the FIFOs and the RAC in bytes;
the ninth bit is used for tagging the end of the messages while they are in FIFOs (either for
sending or after having been received).

2.2 Basics of MAC layer protocol

As stated above, our protocol layer is a medium access control (MAC) layer (possibly a
sublayer of the link layer) of a LAN with a ring baseband channel. The primary service this
layer has to provide to the network layer is reliable transfer of a sequence of message bytes
originating in a sending user subsystem, via the ULC and buffered in FIFO1, to one (or more)
receiving user(s), via its (their) ULC(s) and buffering in FIFO2. This structuring of the link
layer assumes that the ring channel will effectively consist of a chain of RACs that are capable
of getting message bytes from FIFO1 (in bytes) and from their input ring channel port (in

half-bytes), and of putting them to their output ring channel port ' (in half-bytes) and to
FIFO2 (in bytes).

To start transmitting data, an RAC must first bid for the channel using a token access
method with priorities. When arbitration is won, the RAC becomes the ring’s “master” and
can transmit its half-bytes into its output channel. The transmission of data is essentially
an asynchronous pipeline process, such that each half-byte advances to the next RAC in the
ring as soon as a free space is available for it. This is ensured by handshake synchronisation
between the transmitting and receiving RACs in each ring segment.

The transmission mode is finished by the “master” after it has determined the end of
the message. The message structure is, therefore, not important for our purposes. We will
distinguish only five types of data allowed on the ring: tokens M1, M2, M3 (for bidding
process); token M4 indicating the end of transmission mode; and data token. The meaning
of each token can be understood from the next subsection.

2.3 Channel acquisition protocol

The bidding process uses a dynamic priority increase mechanism (for “fairness”). Its verbal
description follows below.

e At the start, after a “major reset” in the system, the System Manager (SM) issues token
M1. In subsequent operation, the current master becomes a source of the initial token M1.
It generates M1 immediately after the ending half-byte of the last transmitted message.

e Each RAC, starting in the “idle” mode, upon receiving M1 from its input channel,
checks if there is a request from its FIFO1 to transmit a message. If there is no such a
request, the RAC remains “idle” and simply issues M1 to its output channel, allowing the
token to propagate further. If the request has been registered, the RAC issues, first, token M2
and then a half-byte with its priority value N, extracted from the first byte of the message to
be sent. It also changes its mode to “bidder” in the competition.

o If a RAC, being in the “idle” mode, receives M2 and then a half-byte with the current
maximum priority value N,,, it becomes an “observer” if no request has been registered, and
transmits M2 and N;,. If, however, the request is set on, it becomes a “bidder”, issuing M 2
and followed by the priority value N,,,,, which is equal to the greater of the following two:
its own value N and the value N, arrived from the channel (current maximum). If the RAC
being in the “observer” mode receives M2 and N,,, it remains in the same mode and passes
M2 and N,,, to the channel.

o If a “bidder” receives M2 and N;, from the channel, and its priority N is less than N,,,
it remains “bidder” and passes M2 and N,, , whereas if N;,, < N it enters the “master” mode
and issues token M 3, after which it immediately initiates message transfer from its FIFO1 to
the channel.

e If an “observer” or a “bidder” receives M3 it becomes a “recipient-observer” or
“recipient-bidder”, respectively, passes M 3 to the channel and activates its reception opera-
tion. The RAC which has become the master of the ring, upon receiving M 3, also becomes a
“potential recipient” of its own message (for error-checking purposes), therefore an intrinsic
concurrency, between transmission and reception, is implied by the protocol inside the ring
master.

The channel acquisition is completed when all the RACs in the ring are in one of the
following three modes: “master-receiver”, “recipient-bidder” and “recipient-observer”. Two
recipient modes are distinguished to indicate a recipient which has a pending request for the
channel but whose priority has been insufficient to become the master in the last competition.
To avoid starvation, the protocol uses a dynamic priority increase mechanism relative to the

!Further, we use terms “input channel” and “output channel” for brevity.

priority that is initially specified in the message®. The “master-receiver” option is introduced
with the aim to allow the master, when transmitting a message in a broadcast (one-to-many)
mode, to address itself. Further we will assume that the ring operates in broadcast mode
only.

It is easy to estimate the worst case in which any module may stay a “recipient-bidder”
until it becomes “master”. If the total number of modules in the ring is » and the number
of priority levels is m, the largest possible number of channel acquisitions before a module
acquires the mediumis n+m—3. Of course, in this estimation we assume that the arbitration
element inside every module is “locally fair”, i.e. it does not ignore the pending request of
the module when the “polling” token arrives.

3 Compositional approach to protocol modelling

3.1 Basics of compositional approach

Communication protocols are inherently compositional and the token ring protocol is not
an exception. We can clearly identify modules (adaptors) as communicating entities which
perform service required from the protocol. Adaptors can then be designed hierarchically so
that at the bottom level modules use only primitive actions. One can easily identify certain
features in the protocol that pertain to its compositionality.

A system consists of a number of entities which correspond to different layers in the standard
OSI model [5] or may play an auxiliary role, maintaining the work of the others. The
entities are interconnected, according to the reference model, through service access
points.

An entity is usually a complex module which, in turn, consists of a number of internal
modules — procedures. A procedure normally performs one protocol function. Thus an
entity is built from the procedures which are composed together using special rules.

A procedure has its own internal structure which is constructed from primitives such as
service primitives and data units. If a procedure is still too complex, it can be re-
fined to the lower level (sub)procedures which are composed together using the same
compositionality rules.

We can thus distinguish three levels of compositionality:

System level, which represents the overall structure of the system consisting of entities.

Entity level, where each entity is designed from the procedures combined together using
composition rules.

e Procedural level: Each of the procedures is defined using a set of protocol primitives and
data units.

3.2 Compositionality in Petri Nets

Petri Nets (PNs) initially attracted attention of protocol designers due to adequate repre-
sentation of concurrency, existence of formal verification methods, ease of understanding of
graphical representation, etc. Yet, they seem to have been lacking compositionality, which,

ZNote that when the dynamic priority level in a “recipient-bidder” has reached its maximum possible value
it will remain constant until the arbitration is won.

El E2

a B d
|] v [1K [1K
at a:Act2 B:Act2 ot T

y:Actl Y:Act3 5:Act4 y:Actl S:Act4 S:Act4
v.Act3

@ (b) ()

Figure 2: Illustration of the concurrent composition and abstraction operations.

until quite recently [3], has been a major impeding factors on their wider utilisation by pro-
tocol designers. Indeed, an attempt to build a PN for a relatively simple protocol may result
in a very complicated and difficult to handle model.

Compositional techniques provide a natural way of hierarchical design of a protocol down
to the level where each module can be easily represented by a PN. The composition operations
can be applied automatically, taking the burden to build a complex representation from the
designer. Also, these methods allow abstraction from the details of a particular implementa-
tion, making the verification process simpler. In addition, if needed, modules can be verified
separately on lower levels, which is often much easier than verification if this module together
with the other modules.

3.2.1 Petri net entities

We will assume that the reader is familiar with the basics of the Petri Net theory. We will
define a labelled Petri Net (LPN) as a PN N in which every transition is labelled with some
label from the set A. Note that one label may correspond to several transitions. We also
define a set of primitives Act = A U {7}, where T is an invisible action.

A PN entity (or entity) is a pair E = (L,,), where L is an LPN and , is a finite set
of labellings called access points. Each access point v : T — M(Act), where T is a set of
transitions on L and M(Act) is a multiset of communication primitives together with an
invisible action .

Each access point defines which of the transitions are observed from this access point and
how the entity can communicate. A transition may be visible from one access point and
invisible from another (if it is labelled with 7).

Graphically, entities are represented as boxes with access points and lines denoting connec-
tions between entities. Each of the entities is later refined into an LPN, where each transition
is multi-labelled by elementary names preceded by the access point name.

There are two main operations defined on the entities composing them into one LPN for
future verification:

e Concurrent composition, is a parallel composition of two PNs L, and L, with synchronisa-
tion performed on transitions provided that they are visible through the access points
a and B. The visibility of the transitions of the resulting entity through the remaining
access points, denoted as ¥, is defined as a multiset of the sum of their labellings.

e Abstraction. A constructed entity may contain redundant access points. The abstraction
operation removes the redundant access points from an entity and yields a new entity
with only remaining access points.

We illustrate operations of concurrent composition and abstraction using simple entities
given in Figure 2(a). Figure 2(b) demonstrates the concurrent composition of entities £, and
E, and Figure 2(c) illustrates the abstraction operation E removing access point .

3.2.2 Petri net procedures

It is not always convenient to represent an entity by an LPN. The LPN representation may
be too big and complicated which makes its understanding difficult. In the real life protocol
descriptions, a complex entity is usually represented as a composition of procedures. This
approach can be naturally applied for describing entities within our framework.

A procedure has same access points as the enclosing entity. In addition, in order to connect
procedures themselves, each procedure should have some information about its states. The
information about the state of procedure is formalised in the notion of macrostate. A macro
state is defined as a set of reachable markings S = {M, M, ... M,} such that each marking
M; contains only one marked place.

We say that a PN is in a macro state if its current marking M belongs to §. Each
procedure is defined as a tuple D = (N,, ,II), where N is a PN, , is a set of access points and
II = {h,l,7} is a set of head, tail and reachable macrostates respectively. Thus a procedure is
defined as an entity equipped with a set of states instead of a single initial marking. These
states carry information for further composition of procedures into an entity.

We require new rules to compose procedures. To obtain an entity from a set of protocol
procedures we need the following composition operations on the procedural level:

- Sequential composition, which composes two PNs together by merging the tail macrostate
of the first PN with the head macrostate of the second one.

Parallel composition, which simply puts two PN together without synchronising them.

Iteration, which merges tail macrostate of a PN with its own head macrostate.

Disabling, which merges each reachable macrostate of the first PN with the head macrostate
of the second one. Thus D, can start from any reachable state of D;.

Transforming to entity, which prepares a composed entity for the system level composition.
It is possible when the head state of the procedure has only one marking.

Each procedure can be refined as a LPN. If the procedure is still too complex to handle,
there may be additional level(s) of subprocedures which are composed following the same
rules. At the bottom level (sub)procedures are refined into simple LPNs.

We will apply the above framework (its more formal description can be found elsewhere [2])
to the design of the asynchronous token ring protocol.

4 Protocol Definition

Let us assume for simplicity that there are only three adaptors connected into the ring and
that there exist only three levels of priority: high, medium and low. It is easy to see that such
a model can be extended to an arbitrary number of adaptors and priorities without loosing
any important properties.

4.1 Architecture

The general architecture of the token ring was given in figure 1. Each adaptor is connected
to its left- and right-hand side neighbour and to the user. The connections with the user
are organised through two FIFO modules (FIFO1 for sending information and FIFO2 for
receiving information). Both of the FIFO modules are able to process one byte at a time.
In our analysis we will assume that there exists an additional buffer (possibly as a part of
the FIFO module) which converts the incoming stream of half-byte data into the byte stream

Channel Channel Channel
Access Access Access
Control Control Control

Figure 3: System level description of the token ring protocol.

for the user and performing the reverse operation for sending the data. For our purposes we
therefore consider FIFOs as being able to receive a half-byte data stream.

Following the above description of the protocol architecture, each adaptor has access points
a and B for connection with its neighbours. S; and R; denote access point to the protocol’s
service. We assume that the service provided by each entity is always consumed by the user
and the user always produces another request for service. Hence, access points S; and R; can
be eliminated by the abstraction operation for the purposes of verifying this protocol.

The entity level description of each adaptor is given in Figure 3. There are six entities in
the protocol: FIFO1, FIFO2, Channel Access Control (CAC), Recewver (Rcv), Sender (Snd)
and ACK. For simplicity we will denote several access points with close semantics as one
access point depicted as ‘barred’ box. The CAC entity is responsible for the bidding process.
Therefore, in order to verify correctness and fairness of the protocol we are primarily interested
in the verification of the CAC entity. It is connected to Sender and Receiver entities which are
responsible for communication with the neighbours of an adaptor. Sender and Receiver are
connected to the FIFO1 and FIFO2, respectively, to facilitate independent data transmission
and reception. When a user issues a request to CAC it starts bidding for channel access. CAC
issues necessary primitives to Sender to send appropriate tokens and “listens” to primitives
from Receiver. When the bidding process is completed, CAC initiates data transmission and
reception (when bidding was won) or data “passing”, i.e. reception and transmission further
along the ring (when bidding was lost). Sender and Receiver issue necessary primitives to
CAC to signal the end of each process. The Ack entity is responsible for maintaining the
self-timed communication between the adjacent adaptors (in a pipeline fashion).

The CAC entity has access points connecting it with with FIFO 1 and Receiver and
Sender. In addition to the access points mentioned above, the Receiver entity has an access
point connecting it to the access point to the left-hand side neighbour and the Sender entity
has an access point ensuring the transmission of the data to the right-hand side neighbour.

4.2 Entity level

Entities FIFO1, FIFO2 and Ack are straightforward to refine into LPNs. In the real protocol
Receiver is also responsible for decoding the address in the beginning of the message. We

toFIFO1

[T e

toFIFO1
toFIFO1

Figure 4: Entity level representation of the CAC entity.

toFIFO1

toFIFOL ® Idle
SndM1 SndM2 SndM3 toRev t2 toSnd
toCAC B
RovM1 SnaM1
Reg
visibility:

visibility: ID;Z-OI ttzZ
tOFIFOL: 15, t6 = o,
toCAC: t1,t2,t3,t4,17 SndM4 ‘
B: t1, 12, 13, t4, t5

Idle
@ (b)

Figure 5: Refinement of the Sender entity (a) and No Request procedure (b).

are considering only the broadcasting one-to-all mode and therefore can abstract from the
realisation of address decoding. Since we are also not concerned with fault detection and
recovery procedures, the Receiver and Sender entities are refined into simple LPNs. An
example of the refinement of Sender entity is given in Figure 5(a). All transitions are labelled
with some communication primitives. Transitions are visible from different access points. For
example, transition ts labelled with the primitive SndDat (send data to the right-hand side
neighbour) is visible through access point toFIFO1 and 8 but not visible through toCAC
access point.

However, CAC entity is still too complex and requires further decomposition on procedural
level. The decomposition of CAC entity is given in Figure 4. Two procedures correspond to
the adaptor being in “idle” (No request)) and “recipient-observer” (Observer) modes. The
third procedure (Requested) corresponds to all modes and operations of an adaptor when it
has registered a request from its user.

4.3 Procedural level

We need to refine procedures comprising the CAC entity. The procedures are simple and we
do not need to build additional levels of subprocedures. Refinement of procedure No request
is given in Figure 5(b). This procedure is connected to the Sender, Receiver and FIFO1.

toFIFO1 Idle

toRev toSnd

SndM4

Visibility:
toFIFOL: tl, t2, 113

toSnd: t1, t2, 3, t4, 15, 16, 17, t8, t10, t11, t12, t14, t15
toRov: t1, 12, 13, t4, 15, 16, 18, 19, t11, 12, t14,t15

Idle

Figure 6: Refinement of procedure Requested.

From FIFO1 it receives Req primitive. Note that one transition is labelled with a multiset
of primitives. The refinement of procedure Requested is given in Figure 6. Note that in
Requested procedure we can clearly identify two branches corresponding to an adaptor being
in “master-receiver” and “receiver-bidder” modes. For simplicity we have drawn additional
conditions on the priority as conditions on transitions (Pin > P and Pin = P). Readers are
invited to refine the third procedure.

5 Protocol verification using Pr/T nets

The compositional approach allowed us to design the protocol in hierarchical manner. After
refining procedures on the lowest level, we can perform their composition. The resulting LPN
represents the entire protocol layer which we need to verify.

The ring is a regular structure consisting of an “array” of identical elements. To avoid
complexity of the protocol representation we can use Predicate/Transition (Pr/T) nets [6]
for its representation. This will also allow us to use existing tools, such as PROD [7], for its
verification.

In order to obtain the Pr/T net description of the protocol we, first, perform composition of
one adaptor. Obtaining a Pr/T net description from the composition is straightforward. The
resulting LPN will be the basic structure of our Pr/T net. We need to introduce additional
places to represent the token flow. We add five places which correspond to the types of
allowed tokens: M1..M4 and data token. Each token is assigned with an adaptor number (a)
representing the fact that the token is enabling actions of that particular adaptor. In addition,
those tokens that are in M2 place are labelled with tuples (a, p) where a is an adaptor number
and p is the priority number.

Each place is then connected to the corresponding transition in the LPN which was formed
by the synchronisation of transitions from Receiver entity. Each of these transitions consume
tokens labelled with the single tuple (a) which represents the fact that adaptor a receives an
input (token (a,p) in place M2 indicates that adapter a received token M2 with priority p).
Similarly, these places are connected to the transitions formed by synchronisation with the

10

<l+2+.+.A-1>

Pr | Protocol ” Reg,High; Req,Low | | Master
otoco <>

<a>
Pr/T net | | Pr/T net

Master

Master
RecvM1

Master Maﬂerj

(@ (b)

Figure 7: Verification of protocol properties.

transitions of Sender entity. In this case these transitions produce tokens labelled with (a+1)
— the number of the “next in row” adaptor.

Transitions which are internal to each adaptor consume and produce tokens without chang-
ing the adaptor number but possibly changing other values (e.g. priority level).

Initially there are A tokens in the place “Idle” and a token with the value (1) into place M1.
This corresponds to the initial injection of token M1 into the ring by the System Manager.

The Pr/T-net model of the ring has been verified using PROD [7]. For deadlock detection
we used the “stubborn set” method implemented in PROD. This method builds a reduced
reachability state space (RRSS). Using Pr/T nets gives a convenient way of verification of
arbitrary number of adaptors and priorities in the protocol. For example, adding a new
adaptor is done by adding a token assigned with (A + 1) into place “Idle” in the initial state
of the protocol. Analysis showed no deadlocks in the model. The reachability analysis (see
Table 1) reveals exponential growth of the RRSS in the number of adaptors and polynomial
growth in the number of priorities in the ring. As the number of adaptors we take the
number of active adaptors in the ring of three, i.e. those adaptors trying to gain access to the
channel. An inactive adaptor is assumed not to have received requests from its user for data
transmission.

We are also interested in some safety and fairness properties of our protocol. We analyse
them by reducing their check to deadlock detection.

Safety property of arbitration. It ensures that the access to the ring will not be given
to two or more adaptors simultaneously. To reduce the problem to deadlock detection we add a
stop-transition to the Pr/T net description of the protocol with the input place corresponding
to a place of the adaptor being in the master state and outputting into a deadlock. This
transition is allowed to fire when there are two tokens in the master state. Analysis of the
ring with three adaptors and three levels of priorities shows that there are no deadlocks in
the net with the new transition, checking 77661 states in its RRSS.

Fairness of arbitration. It shows that a user issuing a request for data transmission
via its adaptor will eventually gain access to the ring. We can check it by composing the
net description of the protocol with the net shown in Figure 7(a) (where transition Master
denotes an adaptor’s state transition to master). In the Pr/T nets we need to add a place
“guarding” the change into the master state. This place is marked with A — 1 tokens labelled
with the adaptor numbers. Thus we will prevent the A-th adaptor from entering the master
state, i.e. acquiring the channel, and reaching any further state. If arbitration was unfair, our
composed Pr/T net would not have deadlocks as in this case the inability of some adaptor
to reach the master will be ignored. Analysis shows that the net deadlocks, after exploring
57639 states in its RRSS.

Priority order. It ensures that, if two users have issued requests with two different
priorities before the adaptor having the request with the higher priority receives token M1
or M2, the one with the higher priority will gain access to the ring first. This problem can

11

No. adaptors | No. priorities | RRSS Size
1 1 104
130
156
1050
2301
4135
9204
30049
8307
31404
84432

O WIN| =W

—
o

W W WININIDNN DN =] =

| N =

Table 1: Experimental results.

be reduced to deadlock detection by performing concurrent composition of nets as shown in
Figure 7(b). Such a composition allows to bring the Pr/T net of the protocol to the initial
marking at which two requests of ¢ (with the High priority level) and j (of the Low priority)
have been issued before the i-th adaptor registers its request, i.e. before tokens M1 or M2
arrive to the i-th adaptor. The right-hand side net orders only the first firing of transitions
labelled with Master; and Master; (representing adaptors entering the “master” mode) and
allows their subsequent firing to occur in any order (thus totally controlled by the protocol
net conditions).

Under the priority conditions set above, Master; is supposed to fire first. This should force
the composition net into a deadlock. Indeed, if, in the protocol Pr/T net, the j-th adaptor
becomes Master before the i-th adaptor (i.e. the protocol Pr/T net violates the given priority
order), then, in the composed system, place p, will be marked. This means that there exists a
marking in the system at which both Master; and Master; can fire in either order. Since there
are no deadlocks in the protocol Pr/T net, then there must be no deadlocks in the composed
system. On the other hand, if the protocol net does not allow the 7-th adaptor to enter the
Master state before the i-th adaptor (i.e. the protocol maintains the given priority ordering),
then the system will (by the property of arbitration fairness) reach some marking at which
only Master; is allowed to fire. But, if Master; has not fired yet, the place p, is not marked
and hence the system must reach a deadlock.

Verification shows absence of deadlocks if the proper access ordering is applied (() goes
before (j)) and reports a deadlock otherwise. Since there can be no two adaptors simultane-
ously accessing the ring (safety property), we conclude that the required order is maintained
in our protocol.

Conclusions

We have demonstrated a compositional approach to designing an asynchronous token ring
protocol. We have verified the labelled (Pr/T) net description of the protocol. The protocol
has been shown to be deadlock-free and having certain properties of fairness of arbitration.
This has not been done in the previous design of the protocol and its asynchronous circuit
implementation.

Verification of the “selective” broadcast addressing method and of the fault tolerance
mechanisms exploited in the ring has been left outside the scope of this paper. We believe
that the use of the compositional approach adopted here would allow us to easily build a
complete model for the verification of those mechanisms. In particular, we would intend to

12

show its tolerance to maximum two static faults (it had originally been designed for). We plan
to address these problems in our future work along with providing an “on-line” verification
of circuits implementing the new version of a channel adaptor.

References

[1]

[12]

[13]

ANSI/IEEE Standard 802.5 Working Group. Token Ring Access Method and Physical Layer
Specifications. IEEE, N.Y., 1985.

B.A. Anisimov and M. Koutny. Compositionality and Petri nets in protocol engineering
Manuscript, December 1994.

N.A. Anisimov. An Algebra of Regular Macronets for Formal Specification of Communication
Protocols. Computers and Artificial Intelligence,, Vol. 10, 1991, pp. 541-560.

B. Coates, A. Davies and K. Stevens. The Post Office experience: designing a large asynchronous
chip. Integration: the VLSI journal, Vol. 15, No. 3, Oct. 1993, pp. 341 — 266.

J. D. Day, H. Zimmermann. The OSI Reference Model. Proceedings IEEE 71 (1983) 1334-1340.

H.J. Genrich. Predicate/transition nets. Advances in Peiri Nets, LNCS 256, Springer-Verlag,
1987, pp. 207 — 247.

P. Grénberg, M. Tiusanen and K. Varpaaniemi. PROD - A Pr/T-net reachability analysis tool.
Series B: Technical Reports, No. 11, Helsinki University of Technology, June 1993.

M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky. Concurrent Hardware: The Theory
and Practice of Self-Timed Design. John Wiley and Sons, London, 1993.

L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous
circuits. Kluwer Academic Publishers, 1993.

K.S. Stevens. Practical Verification and Synthesis of Low Latency Asynchronous Systems. PhD
Thesis, The University of Calgary, Calgary, Alberta, Sept. 1994.

V.I. Varshavsky, M.K. Kishinevsky, V.B. Marakhovsky, V.A. Peschansky, L.Ya. Rosenblum,
A.R. Taubin and B.S. Tsirlin. Self-Timed Control of Concurrent Processes, Ed. by V.I. Var-
shavsky. Kluwer AP, Dordrecht, 1990 (Translated from Russian; Russian Edition — Nauka,
1986).

V.I. Varshavksy, V.Ya. Volodarsky, V.B. Marakhovsky, L.Ya. Rosenblyum, Yu.S. Tatarinov and
A.V. Yakovlev. Structural organisation and information interchange protocols for a fault-tolerant
self-synchronous ring baseband channel (pt.1). Hardware implementation of protocols for a fault-
tolerant self-synchronous ring channel (pt.2). Algorithmic and structural organisation of test and
recovery facilities in a self-synchronous ring (pt.3). Automatic Control and Computer Science,
Vol. 22, No. 4, pp. 44 — 51 (pt.1), No. 5, pp. 59 — 67 (pt.2), Vol. 23, No. 1, pp. 53 — 58 (pt.3),
1988, 1989 (translated from Russian).

A. Yakovlev, A.M. Koelmans and L. Lavagno. High level modelling and design of asynchronous
interface logic. IEEE Destgn and Test of Computers, Spring 1995, pp. 32-40.

13

