Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

Formal Model, Language and Tools for Design Agent's Scenarios in Call
Center Systems

Nikolay Anisimov’, Konstantin Kishinski, Alec Miloslavski,

Genesys Telecommunication Laboratories, Inc.
1155 Market Street, San Francisco, CA, USA 94103
Fax: (415) 437 1027
E-Mail: {anisimov,kotc,alec}@genesyslab.com

Abstract

During the last few years there continues to be remarkable growth in telephone call-center systems. There are many appli-
cations of call-centers in different areas of business such as in telemarketing, insurance, customer service, electronic com-
merce, efc. Moreover, in some cases it is reasonable to think of a call-center as an integrated part of a whole business sys-
tem responsible for the telephone interface with the outside world. Typically, a call center consists of a set of operators,

called agents, who process inbound calls from clients. Call processing may involve the use of computer systems (e.g. data-
base), other devises (e.g. fax-machines, interactive voice response units) as well as communication with other agents (e.g.

deliver a call to more qualified agent, making a consulted call). The call processing may also produce outbound calls. The

treatment of each call being processed is heavily regulated by scenarios called scripts which are specially designed for
specific kinds of the calls. The design of such scripts is one of the main problems in call center maintenance. To cope with

this problem we need special tools, i.e., scripting language, corresponding editor, related environment. In this paper we

present an ongoing project aimed at the design of such a platform. We introduce a Petri net-based model for formal repre-
sentation of scripts and a logical structure of the call center. The model, called script-net, is based on object-oriented Petri
net dialect belonging to a class of high-level Petri nets. In particular, the model allows one to formally represent scripts,

their communication with agents and other resources, exception handling, time constrains. We also consider some imple-
mentation issues. In particular, we outline a visual iconic language specially designed for script specification. The seman-
tics of the language is based on script-nets. An agent of the call center can be perceived as a specific resource and is im-
plemented with the aid of Internet/Intranet technology. To illustrate the use of suggested tools, some typical examples of
scripts are presented including scenarios for inbound and outbound telemarketing.

stations are connected by extension lines and directory
numbers, and to which incoming and outgoing trunk
lines may carry telephone calls between the switch and

1. Introduction

Over the last few years phone call-center systems have
continued to grow at a remarkable pace. Several manu-
facturers and service providers are developing and intro-
ducing systems with enhanced functionality, principally
through what is known as computer-telephony integra-
tion (CTI) [15]. The general purpose of a call center is to
connect operators called agents with members of the
public called clients, i.e., people interested in using the
services of the call center. Typically a call center is
based on at least one telephony switch to which agent

" Corresponding author.

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

the parties who call in. In addition, most modern high-
capacity call centers have agent stations that include
computer platforms, often PCs, equipped with video dis-
play units (VDUs). The PC/VDU platforms are typically
interconnected, usually by a local area network (LAN).
There may also be servers of various sorts (e.g. data base
or fax server) for various purposes on the LAN, and the
LAN may also be connected to a CTI server, in turn con-
nected to the central switch through a CTI link.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

Within a call center, agents process telephone calls from
clients and carry out call-related business.

The typical processing of calls includes using data from
computer systems, including databases; incorporating
other devices such as fax and e-mail; and communication
with other agents. The communication of the agent dur-
ing call processing is heavily directed by a specific sce-
nario, specially developed for such calls by telemarket-
ing experts. These scenarios are referred to as scripts.
The same agent can work with varying call types, con-
trolled by different scripts. Thus, a call center is a dis-
tributed system, usually built on top of a local arca net-
work that connects agent stations, server computers and
telephone equipment.

It is interesting that concept of workflow management
[1,6] can be very useful in designing call centers. In fact,
a call center can be understood as a specific case of a
workflow system, which substitutes telephone calls for
documents circulating in the system. We should also
mention that because office activity very often involves
working with inbound and outbound calls, the processing
of such calls should be naturally incorporated into
workflow management systems.

The present paper is devoted to call center management,
and is specifically directed toward scripting for call cen-
ters. Usually, scripts are written in a relatively high-level
programming language. The complexity of a call center
presents a challenge for any programming tool. Morco-
ver, as with any other sort of programming, when a bug
appears or a change is made in the purpose or operation
either of a call center or a segment of call center opera-
tions, it is often necessary to rewrite a large number of
scripts. This endeavor is no small task, and may take a
considerable time. Moreover, such reprogramming intro-
duces numerous opportunities for errors, both in pro-
gramming and in the layout of the script.

Given the nature of call center management, and script-
ing in particular, it is highly desirable to reduce the com-
plexity and amount of effort required to direct these ac-
tivities. It is especially important to simplify the activi-
ties of agents, such as engagement with clients, and to
provide enough flexibility so that changes and adapta-
tions can be easily and quickly made without fear of er-
ror. To handle this issue we need special tools, such as a
visual language, graphical editor, and others. Essentially,
the requirement is to build a platform for a generation of
CTT applications of varied types. Such tools for the gen-
eration of CTT applications already exist, but for the most
part they do not take into account the distributed nature
of call centers and therefore do not allow the production

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

of scripts with complex communications between agents,
hardware and other resources. In this paper we present
the progress we have made in an ongoing project aimed
at designing such a platform.

If we examine scripts of a typical call center, we see that
their key features include the flexible use of resources
during call processing; extensive manipulation of calls,
including attached data; allowance for exceptions; com-
plexity of real-world scripts; parallel call processing; and
strict requirements for real-time call processing. It is
clear that scripting tools should be designed according to
a formal approach. This paper is devoted to developing
such an approach, using the theory of Petri nets [11,12].
More specifically, in this paper we build a Petri net-
based formal model for representing call center scripts.

2. Structure of a call center

In this section we present an abstract model of a typical
call center that will serve as a subject for the formaliza-
tion process. From now on, the call center will be re-
ferred to as a "system ",

Typically, a system operates with a set of resources.
These are: equipment (¢.g phones, fax machines,
switches, a local arca network, etc.), software compo-
nents (database, text editor, etc.) and personnel involved
in system operation (agents, administration). All com-
munications of the system is accessed through these re-
sources. A typical Call-Center environment is shown on

Figure 1.

From the point of view of applications, the system can be
perceived as a collection of communicating objects. We
will divide all objects of the application level into two
types: resource objects and call objects. The former rep-
resents objects corresponding physical resource of the
system while the latter represents objects intended for
call processing.

The behavior of each object is regulated by a scenario
specification, called a “script'. There may be several ob-
jects working in accordance with one and the same
script. For example, for a script describing the behavior
of a telephone, there may be several objects correspond-
ing to actual telephones in the system; a script specifying
the call processing, may have several objects processing
different calls of the same type.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

Public Switched
Telephone Networ

Switch

Voice Processing

Data Processing Servers
(Data Base & Application

Servers)

Servers = HHHH
|
i il
[l
CThlink |7 Il
= -
Telephony TelephoneO -
Server — Workstation
i I
Telephone El
EE - Workstation Agents'
H% workpalces

~——F

Workstation

Figure 1: A call center environment

We will assume that each script is identified by a unique
name within the system. Moreover, we associate with
each script a domain of object names, to identify each
object within the script. This addressing scheme allows
us to uniquely identify objects within the whole system.

3. Formal Model

For formal specification of scripts of CTI-applications,
we developed a Petri net-based model called script-net
[3] combining some featured from other Petri net models
[11,12]. The model consists of the following four (quite
orthogonal) constituents:

1. High level and object oriented Petri net model
called cooperative nets [14] that allows to represent

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

complex system as a set of subsystems communicating
via the client server protocol [13];

2. For structured specification of complex scripts,
we suggest the concept of hierarchical transition [8].
Under this concept, a net can be represented as a set of
disjointed subnets with links between hierarchical transi-
tions and subnets forming a hierarchical structure. Firing
any hierarchical transition results in execution of its in-
ternal net. This construction makes script representation
modular and allows for the simple modification and re-
use of specifications.

3. For processing exceptions in scripts, such as
receipt of unsolicited events, we suggest a macroplace
construction [2].

4. To represent real-time constraints that are very
critical for scripts, we incorporate Merlin's time con-
structs into our model [10].

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

In the following we consider some of these constituents
in detail and show how they can be used.

3.1. Basis of script-nets

As a basis of script-net we take an object-oriented model
of high level Petri nets known as cooperative nets [14]
that allows us to represent a system as a set of communi-
cating subnets. In particular, each transition can be asso-
ciated with the process of communication (sending or
receiving of message) with other script-nets:

. Sending a command: s(script(v).com(v;,
...,¥J)), where script(v) specifies a target object, and
com(vy,...,v,) is a command with parameters.

. Receiving a command: r(script(v).com(v;,
...,¥,)), that gives a command with parameters from the
object script(v).

This enables us to specify a communication between a
CTT application and a server using a client-server proto-
col [13]. Moreover, it is possible to associate a transition
with a creation of new objects for some script-net.

. Creating a new object: c(script(v).vi,...,vi),
where script(v) identifics a creating object and vy,...,v,
its initial parameters.

Thus each script of a CTT application can be described as
a corresponding script-net. In this case the process of call
processing can be understood as creating an object (in-
jecting a token in head place of script net) and moving it
through the net. Some examples of script-nets are pre-
sented in [3,4].

We allow multilabeling of net [5], i.e., labeling where
each transition may be labeled by a set of expressions,
such as sending and receiving a message, or creating a
new object. This extension can simplify specifications
and make them more compact.

By collecting communicating script-nets, we can pro-
duce a script system that represents a call center’s logical
structure. In this structure we can distinguish application
scripts and system scripts representing system services
such as resource management and call routing.

3.2 Macronets: exception handling

At this point, we should note that scripts describing real
scenarios are usually extremely complicated to work

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

with and therefore require some means of
modularization. We will consider the problem of struc-
tural representation of script nets. In this respect, we can
point out two techniques for modularization in Petri net-
based models we would like to employ — hierarchical
transitions and macroplaces. The first technique is well
claborated within the framework of high-level Petri nets,
e.g. see [8]. Generally, it consists of representing a hier-
archical net as a set of disjoint subnets with links be-
tween transitions and subnets forming a hierarchical
structure. Firing of such a hierarchical transition causes
an execution of its internal net that consists of the firing
of a transition (or step) sequence from initial marking to
the terminal one. So using this technique we can repre-
sent script nets as a set of hierarchical organized script
subnets.

At the same time, in call processing, we may face situa-
tions, which are asynchronous to normal processing, and
a reaction to such events should also be specified. For
example, there may be situations when, during the dia-
logue between agent and client, the telephone line is dis-
connected (e.g. suddenly client puts down a receiver); as
well as more sophisticated situations when the process-
ing of current calls is interrupted and the agent is for-
warded to process new calls with higher priority. Moreo-
ver, processing of such broken calls could be recom-
menced upon availability of agents. To specify such
situations in script nets, special constructs are needed. To
accomplish this, we suggest using the concept of mac-
ronets reported in [2] and generalized on high level Petri
nets [4].

Petri nets with macroplaces. Notions of macronets and
macroplaces have been introduced in [2] for specifica-
tion of such situations where starting the execution of
one procedure may interrupt execution of another proce-
dure. Syntactically, a macronet is defined similar to nets
with hiecrarchical transitions, however we use macro-
places instead of transitions. In other words, a macronet
could be perceived as a set of Petri nets equipped with
hierarchical links of the type "place — net".

Graphically, a macronet can be represented as a set of
included nets, each internal net being drawn within a
circle of corresponding macroplaces. The head place of
an internal net is marked by an incoming extra arc.

The firing rules of macronets are as follows:

e A macroplace is considered to have a token if its
internal net also has a token;

¢ adding a token to a macroplace results in adding a
token to the head place of the internal net;

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

e removing a token from macroplace results in re-
moving a token from the internal net no matter what po-
sition it is in.

It is clear that the concept of a macroplace is helpful for
representing various situations where an interruption is
involved.

High level macronets. Using standard possibilities of
high-level nets we generalize the notion of macroplaces,
allowing us to specify more general constructions. First,
we will be able to build constructions where execution of
an internal net can be interrupted only in specified re-
gions. Second, we can specify a head place of internal
nets dynamically, helping us to inject a token into any
desired place.

Figure 2: Macroplace and internal net

Let m be a macroplace and N,,=(S,, T,,, F},) be its internal
subnet. For an internal net we introduce a data type fHype,,
with a domain equal to a set of internal places:
Dom(type,)=S,={s1, ...,s,}. Let us add to the token inter-
nal net an item of type fype,, the value of the item is
exactly equal to the place where the token is situated.
This can be easily implemented by assigning to tuples of

‘get_agent(x) r(agent.ok(x)) |

s(agent.get) 0 t]2)
T
1:1
llnokll
1:3

incoming arcs with corresponding values from S, sce
Figure 2. Then we add to this a precondition of outgoing
transition e m* an expression of the type v, € S’, where
S" < S, Firing of the transition ¢ results in removing a
token from a place of S’. Note that we can 'remember' the
actual place where the token was before it had been re-
moved. For an arc coming in to the macroplace m, the
corresponding item of the tuple is stated in a suitable
manner. For instance, if it is equal to a place s;€ S, the
adding of a token to macroplace m will result in injecting
a token into s; of the internal net. Apart from a constant,
we can write a variable of the type fype,, that allows us to
determine the incoming place dynamically. Specifically,
we can replace taken to its point of origination, see Fig-
ure 2. More strict definition of high-level macronets can
be found in [3].

With the aid of a macroplace, one can easily specify the
next situation in an agent's scenario:

¢ Interruption of a script execution (naturally with an
apology to a client) at any stage with subsequent return
to an initial state. In this case the processing of the inter-
rupted call is cancelled

e Interruption of a script execution only if it is in spe-
cial regions of the script.

e Interruption of a script execution while noting the
place of interruption and possible current parameters of
the call processing. This information can be used for
future recommencing of the processing of the call.

3.3 Time constraints

To represent real-time constraints that are very critical
for scripts, we incorporate Merlin's time constructs [9]
into our model. In particular, each transition in a script-
net can be associated with a pair [£,,,, £, that provides a
time interval enabling the transition. This enables us to
specify timeouts in script execution.

‘get_agent

és(agent.get) r(agent.ok(x))

1:1 2 | (0

Figure 3: Resource capturing

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

Using this client server scheme of communication and
time constraints, we can build a mechanism of resource
capturing/release. On Figure 3 (i) the scheme of agent
capturing within time interval t is depicted. The captur-
ing is started by sending ¢ command get (firing of the
transition #;) to the script agent that defines the behavior
of the agents. If within the time interval [0,t] a positive
reply is received r(ok(x)) (firing 1) then the agent with
that identifier x is considered to be captured. If within
time interval nothing happens then transition #; fires
hence there are no agents available. This construction is
called get_agent(7). If no time interval is specified then
the transition #; will never fire and thus can be removed,
see Figure 3 (ii).

4. Examples

In the section we discuss a methodology of representing
scripts according to the model we are introducing, with
the aid of some realistic script examples.

Example 1. On Fig4 the script corresponding to re-
source of operators (agents) is depicted. The agents can
be in three states: READY, BUSY, NOT-READY (NR
for short). The transition from READY to BUSY is
caused by receiving a command gef from an object X and
sending it a reply ok. Note that this transition is labeled
by two labels that correspond to receiving and sending
commands. In a BUSY state the agent can return to a
READY state by receiving a command r(X.free) from
the application. Moreover, in a BUSY state the agent can
move to a NOT-READY state (e.g. switching to more
urgent work) informing the application by sending a
command rot_ready. The place S says that the operator a
can work with script 4, the operator » can work with
script B and ¢ can work with both scripts 4 and B.

Figure 4: Script-net of agent.

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Example 2. In this example we build a script-net corre-
sponding to a script for the processing of a retail cata-
logue sales call center [9]. In this context, many custom-
ers call to inquire about the availability of items in a
catalogue, status of their order, delivery options, and
similar routine questions. Such simple calls can be proc-
essed automatically by a voice processing system. Other
calls, especially those involving new customers who
need special assistance, must be processed by an opera-
tor. In Figure 5, we present a script net corresponding to
processing this type of call. When the system enters a
call into a script (a token appears in a head place sp), it
plays a greeting and gives a choice of pressing "1", "2",
or "3" (the transition ;). These choices correspond to
calls concerning availability of items, the status of a cur-
rent order, or other types of calls, respectively.

In the first two cases the call is processed automatically
(hierarchical transitions £, and #,). The third case needs
the intervention of an operator, who is captured by the
expression s(agent.get). Here, the agent is the name of
the script-net for resources corresponding to operators,
get the name of capturing command. If there is a free
operator in the system, he is captured. At this point the
call is transferred and the operator works with the cus-
tomer (hierarchical transition ¢;5). At the end of the con-
versation, the operator is released (7;;). If there are no
free operators (1;,) the system plays a recorded sound file
with appropriate explanations.

In this example, two possibilities for agent capturing
within the time interval t are shown within dashed
boxes. The capturing is initiated by sending a get com-
mand to the "agent" script that defines the behavior of
the agents. If a positive reply r(ok) is received within the
time interval represented by [0,t] then the agent with that
identifier is considered to be captured. If within the time
interval nothing happens, then transition nok fires, indi-
cating that no agents are available. This construction is
called get_agent(7).

Imagine that an agent involved in call processing presses
a "not ready" button on his telephone and becomes un-
available. This event corresponds to firing the transition
t14. At this point the script tries to find another agent (¢;5).
If another agent is indeed available, control of the script
is returned to the same place where it was interrupted,
and call processing continues. The state where the call
processing was interrupted is saved in the variable v.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

‘get_agent(5) r(agent.ok)
s(agent.get)

get_agent(8):

s(agent.get)

too (1t

r(disconnect) s(agent.free)
Figure 5: Example of a Script-Net, in Catalogue Sales Context

Alternatively, imagine that a client suddenly hangs up . A front-end graphical language for specification

during a call. This event corresponds to firing the transi-
tion . Firing of this transition disrupts the execution of
the script including the construction defined above, re-
leases its active agent (if any), and then terminates the
call processing.

4. Implementation Issues

In this section we briefly sketch some tools for genera-
tion call center applications based on developed formal
model. In particular, we developed a programming Sys-
tem for building scripts for processing both inbound and
outbound calls with extensive intervention of living
agents. The system functions in an Intranet environment,
is based on thin-client technology, and uses a graphic
language to describe agent work scripts. More specifi-
cally, the system comprises the following components:

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

scripts with semantics based on Petri net-based model;

. A graphic script editor that supports the script-
ing language and allows to build scripts in a simple and
convenient way,

. Form manager for creating a set of forms to be
interchanged between application and agent station dur-
ing a call processing;

. A script engine that executes scripts upon
emerging inbound and outbound calls in the run-time
stage.

The graphical scripting language allows one to represent
a script as a graph where each node depicted by icon
corresponds to clementary communication with other
objects (e.g. devise object, agent). Arrows between icons
define a causal relation between communication actions.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

% CallProcessing.vsc - ScriptEngine - [Process Call]

dialogl
dialog2
dialog3

oreetings

tranzfer
H-_ Language Operato

BB Calculate
~-TEXT Comment

= Switch

D Thiow

180 Tip/Catchi/Fing
£ Unlock Syre 0

o b Wait Al Threac

D Componerts

-+[_7] Repositories

H-[_] Utilities

free_agent

Figure 6: Graphical script editor

Among other features of the language, we can mention
features which inherited from the formal model:

. Parallel constructs allowing one to represent
multithreading and synchronization between threads;

) Hierarchical constructs which allow one to
build scripts in a modular fashion;

. Exception handling constructs which enable one
to specify the reaction of the scripts on receiving asyn-
chronous and unsolicited events.

On Figure 6, we present the snapshot of the script editor

with the fragment of the script discussed in the
example 2.

5. Concluding Remarks

In this paper we have proposed the Petri net-based model
for design different distributed CTI applications. This

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

approach enables a designer to represent a logical struc-
ture of complex applications for call centers.

In the nearest future we plan to pay more attention to
architectural aspects in the process of formalization tak-
ing into consideration different related architectural ap-
proaches [7].

Considering almost all CTI-applications are real time
systems, we must take into consideration time and sto-
chastic aspects of the model under discussion, i.e., it is
desirable to calculate availability of a call center (for
specific sort of calls), agent's loading, optimal configu-
ration of call-center, etc. By extending our model to-
wards stochastic Petri nets, these issues can be ad-
dressed.

Acknowledgements. The authors are grateful to Evgeny
Petrovikh and Pavel Postupalski for they helpful discus-
sions. First author had also a benefit from Russian Fund
for Basic Research (grant No. 96-01-001773).

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

REFERENCES

[1]

10.

W.M.P. van der Aalst. The Application of Petri
Nets to Workflow Management. To appear in the
Journal of Circuits, Systems and Computers
(1998).

N.A.Anisimov. An Algebra of Regular Macronets
for Formal Specification of Communication Proto-
cols. Computers and Artificial Intelligence, Vol. 10,
No.1 (1991), pp. 541-560.

N.Anisimov, K Kishinski, A.Miloslavski. Petri Net
Based Model for Design of CTI-applications, in
Proc. of the Int. Conference "Computational Engi-
neering on Systems Application: CESA'96", July 9-
12, 19906, Lille, France.

N.A.Anisimov, K.P.Kishinski, A Miloslavski, P.A.
Posupalski, Macroplases in High Level Petri Nets:
Application for Design Inbound Call Center, In:
Proc. Int. Conference on Information Systems
Analysis and Synthesis (ISAS'96), Orlando, Flor-
ida, USA (July 22-26, 1996), pp.153-160.

N. Anisimov, M. Koutny. On Compositionality and
Petri Nets in Protocol Engineering. In: Protocol
Specification, Testing and Verification, XV.
Chapman & Hall, pp.71-86, 1996.

C.A. Ellis and G.J. Nutt. Modeling and Enactment
of Workflow Systems. In: M. Ajmone Marsan (ed.),
14™ International Conference on Application and
Theory of Petri Nets 1993, Lecture Notes in Com-
puter Science, Vol. 691, pp.1-16. Springer-Verlag,
Berlin, 1993.

Enterprise Computer Telephony Forum, S.100 Re-
vision, Media Services "C" Language, Application
Programming Interface, 1996.

K.Jensen, Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Vol. 1: Basic
Concepts, EATCS Monograph on Theoretical
Computer Science, Springer Verlag, 1992.

E. Margulies. Voice Processing Applications Flati-
ron Publishing, 1995, ISBN 0-936648-70-8

P.M.Merlin, D.J Farber. Recoverability of Com-
munication Protocols — Implication of a Theoreti-
cal Study. IEEE Trans. Commun. COM—-24 (1976)
1036-1043.

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

11.

12.

13.

14.

15.

J.L.Peterson. Petri Net Theory and the Modeling of
Systems, (Prentice—Hall Inc., 1981)

W.Reisig. Petri Nets: An Introduction. EATCS
Monograph on Theoretical Computer Science
(Springer—Verlag, 1985).

C. Sibertin-Blanc, A Client-Server Protocol for the
Composition of Petri Nets. In: M.Ajmone Marsan
(ed.), 14™ International Conference on Application
and Theory of Petri Nets 1993, Lecture Notes in
Computer Science, Vol. 691 (1993) pp. 377-396

C. Sibertin-Blanc, Cooperative Nets, In: R. Valette
(ed.) 15" International Conference on Application
and Theory of Petri Nets 1994. Lecture Notes in

Computer Science, Vol.815, Springer Verlag
(1994), pp.471-490

R . Walters. Computer Telephone Integration,
Artech House (1993).

