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Abstract—In the paper, a forma model based on Petri nets is proposed in the context of a compositional
approach to the development and analysis of complex concurrent and distributed systems. Mutlilabels of Petri
netsareintroduced allowing labeling atransition not only with asingle symbol, but also with amultiset of sym-
bols. Operations on multilabeled Petri nets—parallel composition and restriction—are defined. A definition of
aPetri net entity is given based on the notion of multilabels. A Petri net entity is a Petri net with a set of multi-
labels, where each multilabel is regarded as an access point of the entity. The operation of entity composition
isintroduced. Equivalence of entitiesis defined based on bisimulation equivalence of Petri nets. It is shown that
the equivalence relation is congruent with respect to entity composition. It is also demonstrated that the com-

position operation is commutative and associative.
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1. INTRODUCTION

Itiswell known that the formal approach is essential
for the development of concurrent and distributed sys-
tems. Yet, aformal model can be used in practice only
if it isconcurrent, structured, and abstract [28]. Unfor-
tunately, none of the existing formalisms has al these
propertiesin full measure.

Indeed, although concurrent algebraic languages
such as CCS [27], TCSP [5], and ACP [14] and their
application-oriented versions LOTOS [18], occam
[23], and PSF [26] are abstract and structured, they are
not appropriate for representing concurrency. In partic-
ular, they treat concurrency of two events as interleav-
ing, i.e, sequential firing of al possible event
sequences. For instance, concurrency of eventsa and b
is defined as firing of either the sequence ab or the
sequence ba; this is definitely a limited understanding
of concurrency, because it does not allow for simulta-
neous firing of events.

Another group of formalisms, which is based on
Petri net theory [3, 30], makes it possible to represent
concurrency in a more appropriate and natural way.
However, these formalisms are neither abstract nor
structured, which hinders their application to a wide
range of practical problems. In recent years, serious
researches have been conducted in order to overcome
these drawbacks. Some of them are focused on replac-
ing the interleaving semantics of algebraic languages
with the semantics of the so-called “true” concurrency
based on net models. Such attempts were made for
CCS|[22, 32], TCSP[28, 32], ACP [21], aswell asfor

the LOTOS [11] and occam [23] languages. It should
be noted that these approaches faced serious difficul-
ties, because abstract concurrent algebraic languages
had been initially designed without net semantics in
mind. Among other things, they all are as expressive as
the Turing machine, whereas Petri nets are less expres-
sive [3]. This disagreement stimulates search for sub-
sets of abstract languages the semantics of which could
be expressed in terms of Petri nets[11, 22].

Another approach to the same problem is to make
Petri nets structured and abstract without regard to any
languages. Works in this direction try to enrich compo-
sitional capacitiesof Petri nets by defining the notion of
interface for a Petri net and a set of composition rules
[15]. Several papers employed places for such an inter-
face [19, 25, 33], and others employed transitions [12,
34, 35]. Composition of nets was performed by merg-
ing places or transitions respectively. The major
advances in this direction were made in the framework
of the Caliban project and the earlier DEMON project
[31] of the European Program Esprit. The result of
these researches is the Petri Box Calculus (PBC) dis-
cussed in [17].

The PBC model, called Petri box, is essentialy a
Petri net with an interface defined as a labeling func-
tion. Thisfunction maps a net transition to a multiset of
elementary actions. The operator of net synchroniza-
tion uses this information to generate a set of synchro-
nization transitions by merging communicating transi-
tions. It is assumed that an elementary action is the
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name of a communication channel, which may have
parameters.

The next step along thislineis further structuring of
events, which makesit possible to determine communi-
cation directions more explicitly. This approach allows
for the nature of distributed systems, where the devel-
oper has to specify system units and their interaction.
The notion of the Petri net entity, which isageneraliza-
tion of labeled Petri nets, was introduced within this
framework. The single labeling function is replaced by
several ones called access points. Each access point
maps a transition to a multiset of names, where each
name is treated as an elementary operation of commu-
nication with other entities. As compared to PBC, the
communication directions are determined explicitly,
which resultsin splitting asingle labeling function into
several ones.

The Petri net entity (without a multilabel) was first
introduced in [1] and elaborated in [7, 8]. However, in
these papers, the emphasis was on application of the
formalism to design of computer network protocols.
This paper is devoted to further development of the
technique of Petri net entities, itsformal definition, and
its generalization to multilabeled entities.

2. MULTILABELING PETRI NETS

LetA={a, a,, ..., a} besomeset. A multiset over
theset Aisafunctionp: A— {0, 1, 2, ...} associating
each element of the set A with a nonnegative integer.
Sometimes, it is convenient to represent a multiset over
the set A as a formal sum n;a; + n,a, + ... + na or
Z n, &, where n; = p(g;) is the number of occurrences
of a [J Ainthe multiset. As arule, members of the sum
with g = 0 are dropped. The union and intersection of
two multisets |, =gy + ... +na. and fl, =m@a; + ... +
ma@, over theset Aaredefined as; + [, = (N + m)a, +
(et mgaeand Py — Hp = (N —myay + ...+ (N —
mJ)a,, respectively; intersection is defined only when
n—-m==0foral l1<i<k Wewritepy; <, if npsm
forany 1<i <k, andwewritep, <, if gy S g and yy #
Mo. If n,=0for al i, such amultiset is denoted by 0. We
writead pif Ch>0: (a, n) O W

The set of all finite multisets over the set Ais desig-
nated by JL(A). The set of al possible sequences of
symbolsfrom the set A, including the empty string e, is
denoted by A*.

Suppose that f: A — Bisafunction, and X O A.
Then f OX is the projection of f on X defined asf X =
{(a,b)Of|lalX}.

Definition 2.1. A Petri netisaset = =[5 T, *(), ()",
MoClwhere

(1) Sisafinite set of places,

(2) Tisafiniteset of transitionssuchthat Sn T="[J;

(3)°() : T— M(S) isan input incidence function;

4) () : T— (S isan output incidence function,
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(5) My O M(S) isaninitial marking.

Themultisets*t and t* are called the input and output
sets of the transition t [ T, respectively. The functions
‘() and ()° can be naturally extended to multisets:

(Nt + ... +nd)=nit + ..o+ net, (Nt + ... +nt) =
Mty + ... + Nty

In what follows, we use traditional graphic repre-
sentation of a Petri net as a bipartite graph, where cir-
cles denote places and rectangles denote transitions.
Places and transitions are linked by directed arcs repre-
senting the input and output incidence functions. The
weight of arcsis specified by integers placed near arcs.
Marking is depicted by tokens positioned inside places.

In this paper, we use step semantics of Petri nets
based on firing of sequences of transition multisets.

Themarking M of thenet = =[F T, *(), (), MLisa
multiset over S i.e., M O /. We say that astep (atran-
sition multiset) © O JL(T) is enabled in the marking M
if *©@ < M. The step © U J(T) enabled in the marking
M can fireyielding anew marking M', which is denoted
asM[OM', whereM'=M —"0O + ©". It should be noted
that, if the step © is enabled in the marking M, then the
step ©' < O is also enabled in the marking M. If ® =
0,0,...0, 0 (M(T))*, then M[OIM' denotes that there
is a sequence M;, M, ..., M,_; such that
M[O,[M,[O,[]..M,,_1[©,[M". In this case, we say that
M" is reachable from M. M[M" denotes that there is
® O M(T)* such that M[PDA". The set of all markings
reachable from M is defined as [MC= {M' | M[[M'}. If
the net to which the statement refersis to be indicated,
an appropriate prefix should be used. For instance, :
M[®M', Z;: M<°O.

Let A beafinite alphabet of namesand A ={a |a[
A} be an associated al phabet of complementary names.
In other words, we define a one-to-one correspondence

1A —~ A between the names and their complemen-
tary names. For the sake of simplicity, the inverse func-

tion = is denoted by the same symbol: =: A —» A.

Thus, we have 2 = a. Let T O (A O A) be a specia
symbol associated with an invisible action. Denote Vis =

A0 A and Act = JA(Mis) O {t}. The function ~ can be

extended to the multiset of names n,a, + ... + n @, =
n,a, + ... +na, . For example:

a+2a+3b+c = a+2a+3b+c.

Definition 2.2. A label of aPetri net Z =[§ T, *(),
0", MyUsthetuple A = [A, alJwhere A is some a phabet
and o: T — Actisalabeling function.

This definition is an extension of awell-known def-
inition of the labeling function. In particular, every
transition can be labeled not only with a single symbol
but also with amultiset of symbols. A transition labeled
by T is considered an invisible or internal transition.
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On the physical level, a label denotes elementary
communication. For example, the symbol a O A is
assumed to correspond to sending a message with the
name a, and the complementary symbol a, to receiving
amessage with the name a. The symbol T is not related
to the communication but describes some internal
event. If atransition is labeled with a multiset of sym-
bols, the latter corresponds to simultaneous receiving
and/or sending messages upon firing the transition.

Thus, if o(t) = a + 2b, then the message a is received
and two messages b are sent when the transition t fires.
L et us show how thelabeling function o is extended
to the multiset of transitions, o: M(T) — Act. If © =
nia; O J(T), thena(®) = § n,o (a). If every tran-
stiontinthestep © isinvisible, i.e, o(t) = T, we write
o(@) =T1.

The function o can be naturally extended to the
homomorphism o: (M(T))* — (M (Act))*. Define the
function o*: (M(T))* — (M9)* eliminating all sym-
bols T from sequences:

_ e, if o(©) =T,
Ep(@), otherwise;

o (PO) = o' (D)o (O).

Inwhat follows, the symbol © denotesastep and the
symbol @ denotes a sequence of steps.

If WO (M(Ms))* and A = [A,, g,0are labels of the
Petri net Z, then M(WGM' denotes that & O (JM(T))*:

M[®M' and o) () = W. For the sake of brevity, the
sequence M[®M' o(P) = e iswrittenasM 0 M', and
the symbol [1 denotes an invisible sequence of steps.

Definition 2.3. Suppose that =, = [}, Ty, "1, 01,
My Oisanet and o = [A,, o,isits label. Then the a-
restriction of thenet Z isanew net > = d,(,) satisfying
the following conditions:

(1) S=S;

Q) T=TMtOT]|a4t) £1};

@) ="(t),t0OT,

@ty =@, t0T,

(5) Mg = Mg,

Less formally, a restriction of the net eliminates
each transition labeled by a name from Vis together
with the adjacent arcs. Figure 1 illustrates this opera-
tion. Here, the transitions t; and t; labeled by names
from Vis are eliminated, and the invisible t-transition
remains.

Suppose that, for the net = = 0,(,), there are two
labelsa = [A, o,L8nd B = [Ag, ogLIThelabel (3 for the net

2 can be naturdly restricted asfollows: 3 = [Ag, o LITL

c'(0)
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Fig. 1. Application of the restriction operation.
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We will write 3 instead of [3 when this does not result
in any confusion.

Proposition 2.4. Let 2 be anet and a and 3 be its
labels. Then, the following equality holds: d; (95(N)) =

05 (0u(N)).

Proof. Divide T into four digoint subsets: T=T,; O

Ty = {tOT | ou(t) 2T Z04(1)},
T = {tOT | gu(t) 2T =0p(1)},
Ty = {tOT | g4(t) =T1#04(1)},
T = {tOT|o4(t) =t = 4z(t)},
05(05(2)) = 05(08 T\T, U Ty),
0 0(Tu O Ty), 07 O(Ty O Tyy), MoD
= 5Ty, () 0Ty, )7 0Ty, MO
05(05(2)) = 05((S T\T,, T Tyy),
0 0(T OTy), 07 O(Ty O Typ), MoD

=[5 T11’ () IjT11’ () DTll! MoD

This proposition makes it possible to extend the
restriction operation to the set of labels.

Definition 2.5. Let Z beaPetri netand H ={a;,, a,,
..., O} beaset of itslabels. Then, 04(2) = 9, © g, °©

.0 04 (2).

3. CONCURRENT COMPOSITION
OF MULTILABELED PETRI NETS

Concurrent composition is a very important part of
the compositional approach, since it allows construct-
ing systems with interacting components. There are
several definitions of this operation for Petri nets [21,
22, 25, 32]. These definitions are applicable only for
one-to-one communications, i.e., when a transition of
one net ismerged with at most one transition of another
net. However, we need a generalized concurrent com-
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Fig. 2. Concurrent composition of Petri nets.

position for the case of the multicommunication consis-
tent with the definition of amultilabel.

Supposethat 2, = [$;, Ty, *()1, ()1, MeyLand 2, = (8,

T, *02 ()2, Mg,Care two Petri nets. Suppose also that
the nets 2; and Z, have digoint sets of places and tran-
stions;i.e, SN S=T,n T,=0.

Definition 3.1. Let %, and X, be Petri nets with
labelsa = 1A, o,00and B = [Ag, ol respectively. Con-
current composmon of the nets Zl and X, with respect
toa and Bisanew net Z = (2, 4| Z,) such that

(D S=50S;

QT=T,0T,0T, 05T, where

T1oOp To= {Hy + Mo | 1y OM(Ty), Hp O M(Ty),

TLO (4 = gp(H,) , thesum iy + Py isminimal};

) 0="0.00-0 {(Hl + Uy, "(M)1 + 7 (H2)2) [ My +
Hp O, py O (T, pp O AM(T)};

@0 =01 002 O{(u+ Ko ()1 + (H2)2) [ +
Mo O T, py O M(TY), pp O AT}

(5) Mo =Mg; + Mg

The sum p, + Wy isminimal if thereisno sum i +

Mo suchthat by + py < Hy + Wy and 0g(Hy) = ap(H,) -

Less formally, two nets 2, and X, are merged, and
new synchronization transitions T, g T, are added.
These new transitions are specified by multisets of
symbolsp, + Py, Wy O M(T,), Ky O M(T,). For new tran-
sitions, their input and output multisets are computed:
(M1 + Ho) = "(Ha) + "(M2), (Hy + H2)” = (M) + (Ho)"
When it does not result in ambiguity, weuse T, O T,
instead of T, ,[g To.

Figure 2 gives an example of concurrent composi-
tion. In this example, three synchronization transitions
are added. The first transition is (t; + 2t,) + 2t;, where

O4(ty + 2tp) = 04(2t;) = 2a + 2b; the second one is
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(t + 1) + (tz + ty) With oy (ty +tp) = Op(ts +1t,) =2a+

b; and the third oneist, + 2t, with o,(t;) = 04(2t,) =
2a.If, e.q., t, isrenamed with 1, the second and the third
synchronization transitions are not formed.

Obviously, the operation of concurrent composition
introduced above becomes practically useful if we sup-
plement it with a procedure for computing the set of
synchronization transitions T, LI T,. It turnsout that this
problem can be reduced to the well-known problem of
finding the set of minimal invariants for a Petri net [2].

Theorem 3.2. Finding synchronization transitions.
The problem of finding the set of synchronization tran-
sitions for parallel composition of Petri nets can be
reduced to the problem of finding the least set of invari-
ants of the Petri net.

Proof. Let a = (A, 0,[0and B = [Ag, oglbe labeling
functions of Petri nets 2, and Z, respectively. Let A =

1 1 1 2 2 2
D 00 T={t1, 65, ..., th},and T,={t}, 5, ..., 3}

Construct anew Petri net asfollows: 51, = @, T,0T,,
0, 0, MoLlwhere M = 0,

. [oL(t) OA, if tOTy;
(t =0, _
og(t) 0A, if tOT,,
. o.(t) OA, if tOTy;
(t) = o(t) 1
op(t) 04, if tOT,.

Here, the projection o*(t) OA preserves only direct
names from A. Note that, when the transition ti1 fires,
oL (1)) DAisadded tothe current markingand o (t) CA
is removed from it. When the transition t° fires, oy (t)

LA is added to the current marking and og(t) OA is
removed from it. Therefore, it is possible to return to
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the zero marking by firing the sequence v I (T, O T,)*,

Mo |vIM, only if 04(X) = og(y) . Here, x and y are mul-
tisets of transitions from T, and T, occurring in v. On
the other hand, it is known that, if thereis v O (T, U
T,)*: Mg[vIM,, then the eigenvector v isaT-invariant.
Moreover, if x + y is minimal, the eigenvector of the

multiset x + y isthe minimal T-invariant of thenet X, .
Next, invariants containing no transitionsfrom T, or T,
are removed from the set obtained. This is necessary
since we are concerned only in the communication
between the nets rather than in autocommunication,
when the net communicates with itself.

Thus, to generate the set of the synchronization tran-
sitions T, O T,, it is necessary to construct the net %,
and compute its set of minimal T-invariants. Every such
invariant f = O, ..., f,, yOproduces one synchroniza-

tion transition fyt} + ... +ftt +f,, ,t5 + ... +f,, ot

There are many algorithms of finding T-invariants for
Petri nets based on the Farcas algorithm. Some of them
arediscussedin[2]. In the general case, the problem of
computing the set T, O T, has exponential complexity,
athough, some heuristics may be used to simplify the
problem [6].

Back to Fig. 2, it is possible to construct a net 1

(see Fig. 3). It can be easily seen that the net 51 has
threeminimal invariants: t; + 2t,, t; + 2t, + 2t;, and t; +
t, + ty + .

Now, we need to define an extension of a label y of
the net 2, to the net (Z; 4|z Z,), which will be denoted

by vy.

Definition 3.3. Suppose that a = [A,, o,[Jand y =
[Ay, o [arelabelsof thenet 2, and B = [A, oglisalabel
of the net Z,. Then, the extension of y to the net (Z; 4|
%,) isthelabel y =@, 0, Jwhere

o, = 0,0{(t, 1) |tO(T)}
O{(x+y,0,(x)) [ x+yOT,0T,,
xOM(T,),yOM(T,)}.

In other words, the label of transitions from T,
remains unchanged, the label of the synchronization
transitiont 00 T, 0 T, in y is defined as a sum of labels
of the corresponding transitions, and transitions from
T, arelabeled by T.

We will need projection functions for the synchroni-
zation transition of the resulting net = = (Z; 4|z Z4).
These projectionsv,: T, O T, — M(T) and v,: T, O
T, — JI(T,) are defined asfollows. Let t = py; + W, O
T, O T,, where g, O JM(T,) and p, O M(T,). Then,
v,(t) =y and v,(t) = 1,. Hence, wecanwritet = i, (t) +
Mo(t). It isalso possible to naturally extend v, and v, to
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Fig. 3. An example of construction of the net ilz .

the transition multisets v;: M(T, O T,) — M(T;), i O
{1, 2} asfollows: v;(©) = Z O (t)v; (t).

Next, the following dependences are established
between the behavior of the initial nets and the result-
ing nets.

Proposition 3.4. Let = =(Z, 4|3 Z,) beacomposition
of Petri nets. Suppose also that M;, M; O J(S,) and

My, My O A(S).

() 1fO0T,0T,and: M; + M,[OIM), + M}, then
3.0 M; [v(©)OM] and Z,: M, [V,(@)OM,,.

() If Z,;: My[0,IM}, Z,: M, [O,0M}, and T # 0,(Q) =

05(©,), then there exists © 0 T; O T, v4(0) = Oy,
V,(0©) = O..

Proof follows from the definition of entity composi-
tion.

Thefirst part of Proposition 3.4 saysthat each firing
of the step © in the resulting net corresponds to the fir-
ing of the steps ©, and O, in the initial nets; the latter
steps are projections of the former one: @, =v,(0) and
©, = Vv,(©). The second part says that, if the steps O,
and ©, canfireintheinitial netswith the samevisibility

status, i.e., 04(0,) = 05(0,) , then, in the resulting net,
the step © whose projections aretheinitial steps ©, and
©, canfire.

4. FORMAL DEFINITION
OF A PETRI NET ENTITY

As it was mentioned in Introduction, a Petri net
entity isalogica unit with severa access pointsintended
for communication with other units. A Petri net entity
can be represented schematically as arectangle with out-
going lines denoting access points. Figure 4a gives an
example of schematic representation of an entity.
Below isthe formal definition of a Petri net entity.

Definition 4.1. A Petri net entity (PN entity or just
entity for the sake of brevity) isatuple E = [X, NJsuch
that

DzZ=0ET, "0, (), MUis a Petri net called the
structure of the entity;
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Su @, T, IDis0]
@, EXP, IDat[]
Tm @Con, 1, IConld
E
O, OFF, IAckO
SI wDat, ON, IDat(]
WDis, T, IDisO
) (ii) E[Su, Tm, SI]
Fig. 4. A sample entity.
2T ={ay a, ..., a,} isaset of access points, Vvide accessto servicesof higher and lower levels. They

which each point having the form a; = [id;, A;Jwhere
(@) id; isthe name of the access point a; and
(b) A; = [4,, o;0s the multilabdl of the net .

Inwhat follows, the PN entities are denoted by (pos-
sibly indexed) letters E, F, and G; the access points are
denoted by Greek letters a, 3, and y. The set of hames
of the entity E = [X, I'lis defined by means of the func-
tion Id(E) = {id, | a O I'}. We often write a; = [id;, 4;,
o, Thus, each access point a; is defined by its name
id;, an alphabet A; of names, and a labeling function g;
mapping each transition either to a symbol t or to a

multiset over the set A, O A, .

The definition of the entity requires some explana-
tions. A PN entity is nothing but a Petri net with aset of
multilabels; i.e., the entity generalizes the notion of
labeled Petri nets. Communication with an entity is
possible only through its access points. In particular,
watching the behavior of the net is a special case of
communication. Clearly, an entity may behave differ-
ently in different access points. A transition labeled by
T in some access point is invisible in this access point
and cannot be used for the communication with the
entity. The same transition can be simultaneously visi-
blein several access points, but possibly under different
names. Moreover, a transition can be visible in one
point and invisible in another. Finally, a transition can
beinvisible in all access points.

An entity E with accesspointsay, ..., o, is denoted
by E[a,, ..., a,]. Graphicaly, the entities are repre-
sented as Petri nets where each transition is labeled by
the set [d,, ..., a,00 Act; x ... x Act,. Obvioudly, the
choice of sets Sand T in the entity definition is not
important from the standpoint of external behavior of
the net; hence, the entity is defined up to isomorphism.

Figure 4 gives an example of the schematic and net
representations of an entity of a smple protocol. The
entity has three access points. The points Suand 9 pro-
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are defined over the alphabets Ag, = {uCon, uDis,
uDat} and Aq = {ICon, IDat, IAck, IDis]. The access
point Tmisintended for communication with the timer
entity and is defined on the alphabet ATm={ ON, OFF,
EXP}.

Another example of an entity isgivenin Fig. 5. The
entity specifies the mechanism of protocol timeout. It
has one access point defined on the alphabet A = { ON,
OFF, EXP}, where labels correspond to switching on
the timeout (ON), switching it off (OFF), and its expi-
ration (EXP).

5. COMPOSITION OF PN ENTITIES

In this section, we introduce entity composition,
which makes it possible to create complex structures
from simpler ones. First, we present an auxiliary nor-
malization procedure.

Definition 5.1. Suppose that E = [X, I' is an entity
with access points a, 3 O NJsuch that id, = id;. The
union of these access pointsis anew point y = [id,, A,,
a,[such that idy= id, = idB, A, =0, 0D, and, for any

toT,
o4(t), if
op(t), if au(t) =1,
04 (t) +op(t),

The union of al access points with identical names
iscalled a-normalization of the entity and isdenoted by
o —norm(E).

In what follows, we assume that all objects are a-
normalized.

Definition 5.2. Suppose that E; = X, ';and E, =
X,, I,Care entities given in the normal form and a O
Iy and BT, aretheir access points such that id,, = ids.
Then, the composition of E; and E, with respect to a

op(t) = 1,
g, =
otherwise.
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and B istheentity E' = (E; ,||; E;) = a —norm(E), where
E=[E, Ndand

(1) 2= a{&,é} (Zl cxlB ZZ);
~ @r={y|ly0r,0rXo, p}}, where y = id,
Ay ((see Definition 3.3 of label extension).

Lessformally, the structure of the resultant entity is
constructed as follows.

(1) The composition of the Petri nets %, and %, with
respect to the access points o and 3 is computed.

(2) Therestriction of theresultant net iscomputed in
the pointsa and 3 (strictly speaking, intheir extensions

a and B). It isworth noting that the transitions that do
not participate in the composition, though visible in
these access points, are also eliminated. Thisis consis-
tent with the informal understanding of the transition
label: atransitionislabeled only for communication. If
it islabeled but do not participate in communication, it
should be eliminated.

(3) The access points that do not participate in the
composition are extended to the entire resultant net and
are united to form the resultant set of access points.

(4) The access points participating in the composi-
tion (a and ) are eliminated.

(5) The resultant entity E is a-normalized, since the
union of the access points may contain two points with
identical identifiers.

Figure 6 illustrates the composition of entities pre-
sented in Figs. 4 and 5. This is the composition of a
simple protocol entity and the timer entity. The result-
ing entity has only two access points corresponding to
the interface with the upper (Su) and lower (S) levels.
Asthe access pointsinvolved in the synchronization are
no longer required, they have been eliminated.

Now, it should be clear why it was necessary to
replace the standard labeling function with a multila-
bel. The point is that the entity composition, where all
access points are defined using labels, may yield the
resultant object where several symbols correspond to
one transition. Indeed, suppose that the composition of
two entities Ej[a, {] and E/[[B, &] with respect to the
pointsa and 3 mergestransitionst; andt,. Letid; = id;
and a;(ty) = &, g¢(t,) = b. Inthiscase, whent; andt, are
merged, two symbols (two elementary communication
operations) a and b corresponds to the resultant transi-
tion.

6. EQUIVALENCE OF ENTITIES

The importance and practical usefulness of the
notion of equivalence are commonly recognized in the
theories of concurrent and distributed processes. There
isawide range of equivalence relations defined for var-
ious contexts, with some relations being stronger than
others (see, for example, the survey in [20]). Most of
these definitions can be expressed in terms of Petri net
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Lov] |

@ (ii)

Fig. 5. A timer entity.

theory [29]. In this paper, we use the notion of bisimu-
lation equivalence studied by many authors [14, 21,
27]. First, we give the basic definition of weak bisimu-
lation equivalence of labeled Petri nets[16].

Definition 6.1. Suppose that there are two Petri nets
>, and X, and their labeling functions A, and A, respec-
tively. These nets are weakly bisimulation equivalent
with respect to the |abelsif thereis abisimulation rela-
tion N O [Mg, X [Mg,such that

(1) Moy, Mgp) O N;

(2) if (M3, My) O R and W O (A(Vis))*, then,

(@ if M; (W] M;, then OM3: M, (WL M, and
(M1, M3) O,

(b) if My (WG M5, then OM;: M; (WG M; and
(M3, M3) O 0.

This equivalence iswritten as (Z;, A;) =" (Z,, A,).

Using this definition as the basic one, we employ its

version from [16] defined in terms of a single step,
which is based on the following fact.

Proposition 6.2. Sngle-step version of bisimulaton
equivalence. Suppose that there are Petri nets %, and 2,
with labels A; and A,. The equality (Z;, A) =" (Z,, A,)
holdsif and only if thereisarelation h 0 [Mg,[x [M,0
such that

(1) (Mo, Mgp) O N;

(2) if (M3, M,) O N, then

@M [0 M O @ OUUT)*: M,y [®OM3, (M,
M3) O N and 04(0) = ap(P);

(b) and vice versa.

Proof issimilar to that of Proposition 3.2 in [16].

To put it differently, if a step @ with the visibility
0,(©) = Wires from the marking of one net, it is pos-
sibleto fire a sequence @ of stepswith the same visibil-
ity og(®P) = W from the equivalent marking of the other

net. This meansthat ® can be represented as ] ©' 1,
where 0(©") = W. Thus, the executed sequence con-
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@, IDisU

I;ImCon, [Conld

[, [Dat0]

@, lAck

WDat, IDat]
(ii) E[Su, SI]

WDis, [DisJ

Fig. 6. An example of entity composition.

tains the only visible step @', and the other steps are
invisible.

Based on these definitions, we introduce the equiv-
alence of PN entities in the access points.

Definition 6.3. Suppose that there are two entities
E, =X, N0and E, = [X,, I',0with access points a =
iy, Ao (10 Ty and B = [iidg, Aglld ', These entities are
equivalent in the access points a and 3 with therelation
Nif and only if id, = idg and (Z, Ay) =" (2, Ap). This

equivalenceis denoted as E; azé‘ E,.

The complete equivalence, i.e., equivalence in all
access points simultaneously, is defined as follows.

Definition 6.4. Two entities E, = X4, ';0and E, =
X, [,Careequivalent if thereisarelation i and aone-
to-one mapping w: N, — I, suchthat, forany a O T,

idy = idyyq) and E; azfj(a) E, hold. This equivalence is
denoted as E; = E,.

In other words, equivalent entities have the same
number of the access pointswith the same set of names:
Id(E;) = Id(E,). Moreover, they are equivaent in all
access pointswith identical names and the bisimulation
relations N areidentical.

It can be easily shown that equivalence of entitiesin
the access points with identical identifiersfollows from
the equivalence of these entities. In general, the oppo-
site isfalsg; i.e., equivalence does not follow from the
equivalence in every point. Such equivalences may
have different bisimulation relations, whereas the com-
plete equival ence suggests the only relation.

Proposition 6.5. Supposethat there are entitiesE; =
X, M 0end E, = X, INL,0with accesspointsa,, B, O T4
and oy, B, O, suchthat id, =id,,, idg =idg . Let
these entities be equivalent, E; = E,, with the bisimula-
tion relation M. If Z;: M; [©,0M;, g, (©) = W,
0p, (©1) = W, and (My, M,) O R, then the net %, con-
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tains a sequence ©, such that =,: M, 0 O, O M,,
(My, M) ON, 0, (0,) = W,, and 0, (9,) = W,.

Proof. It isrequired to prove that, if a step ©; with
the visibility W, ina; and Wy in B, firesin the first
net, then the equivalent sequence in the other net con-
tains the only visible transition ©, with the same visi-
bility in the pointsa, and [3,. L et us prove this. Suppose
that, in the equivalent sequence of the second net, the
stepsvisiblein a, and 3, are not the same. Without loss
of generality, assume that

M, O M; [©,0M5 0 M3[0,IM; 0 Ms,
where g, (©;) =W,, 05 (0;) =W, 04,(0;) =T,and
O, (©,) =1. However, if thereisonly one bisimulation
relation N, thisisimpossible, since, e.g., the marking
M§ has no equivalent marking in the first net. Indeed,
only two cases are possible: (M;, M3) O 90 and (M},
M3) O R. However, (M;, M3) O R, sinceit is visible
in B, that Wj has already fired, whereasin 3, thisis not
visible yet. Similarly, (M, M3) O R.

It has been known that one of the basic advantages
of the bisimulation equivalenceisthat it possesses good
algebraic properties. It turns out that the equivalence of
entities inherits these properties.

Theorem 6.6. Congruence of entity equivalence.
Equivalence of PN entities is congruence with respect
to the composition operation; i.e., if E,=E;, O T, yO
I3, andidg = id,, then

(Ey a”} E)) = (E; q”¢ Es). (@)

Proof. Let E, = X, M,[E, = X,, I,0and E; = X5,
I sCDenote F = (E; 4||s E) and G = (E; 4|, Es). LELE, =
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E; with therelation ;. To prove Eq. (1), it is sufficient
to show that

N = {(My+ My, My + Mj) | (M, M) DRy,
M;+ M, O[MgOM; + M O[Mgold .

Thisfollows from Propositions 6.2 and 3.4. Indeed,
suppose that (M; + M,, M; + M3) O N and, for some
synchronization transition t 0 T, O T,, the following
equation holds:

Zeo My + M, [tOM) + M, 3)

with a(©) = Wfor some @ I",. Let us show that there
isasequence @ of stepssuch that Zg: M; + M3 [®OM] +
M3, 0(®) = W. From the step (3) and Proposition
6.2(1), it followsthat the step M, [v,(©)[IM,, firesinthe
net >,. From the equivalence E, = E;, it follows that 3,
containsthe sequence @' = @ ' with g,(v,(©)) =W
and 0p(©") = W. Take Mj such that (M, M) O ;. In
line with Proposition 6.2, Z3: My 0[O0 M3, 6,(©s) =
0p(03), and 0(©3) = W. Proposition 6.2(1) guarantees
that the net G containst' = © + ©; with g,(t) = W. This
means that

S My + M, [t'OM, + M

with g (t") = W.
For transitions that are not contained in the set of the

synchronization transitions, the proof is obvious. This
result can be easily extended to the transition step.

This result makes it possible to apply the modular
approach to the development and verification of com-
plex communicating systems. In particular, one can
replace some unit of the system with an equivalent one
without changing the overall behavior of the system.

Note that the entity equivalence based on the step
semantics is the weakest equivalence; it is congruent
with respect to the composition operation. It is easy to
verify that the equivalence based on the interleaving
semantics of Petri netsis not congruent.

)

(4)

7. PROPERTIES OF ENTITY COMPOSITION

In order to use the entity composition in practice,
this operation must be commutative and associative.

Proposition 7.1. Commutativity of entity composi-
tion. Suppose that there are entities E and F and their
access points o O g and B O .. Then (E 4||s F) =
(Fgll E)-

Proof immediately follows from commutativity of
the union operation (for sets and multisets) and Defini-
tion 5.2.

In addition, it turns out that the composition opera-
tion is associative.
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Theorem 7.2. Associativity of entity composition.
Suppose that E;, E,, and E; are entities, a O M,, B, O
I, id, O 1d(E;), and id; O Id(E;). Then,

((Ex alb E2) ¢lk Es) = (Eqdolk (B2 |k Eo)).

Proof. Let F = ((E; olls E2) ¢|k Es) and G = (E; 4l
(E; |k E3)). Obvioudly, it is sufficient to verify that the
sets of synchronization transitions of the nets2 - and >
areequal,i.e, (T, 0T,) OT;=T, O (T, O Ty). For this
purpose, we employ the idea used in the proof of The-
orem 3.2. Let us show that both sets are equal to T, U
T, O T;, which is defined as follows. An auxiliary net

S123 =B, 0 Sy, T, 0T, 0T, 0, (), Myis con-
structed, where S, = A, = Ay O A, S = 4 U 4y,
M, =0,

o, (t) DA, if tOTy;

(1) ={ oh(t) A, +0;5(t) Ay, if tOTy
o5 (t) DAy, if tOTy,
o, (t) DA, if tOTy;

(1) =4 op(t) DA+ 0y (t) Dy, if tOTy
oz (t) Ay, if tOT,.

The set of minimal T-invariants for 123 isT,0T,0
T5. Consider how the set (T, O T,) O T3 is computed.

First, the net 51 isused to construct the set T,0T,=
{X1, ... X}, where x; = Ztmlntt + Ztmzntt are

minimal. Next, the net ilz,s is constructed from the
transitions T, O T, and T; assuming that

. O 0
(%) = Ozaz nt+ z nt‘%

oT, toT,

O O
= ozaz ntﬂa = Z noy(t).

aT, toT,

It is well known that algorithms of searching for T-
invariants (e.g. [2]) consist in stepwise transformation
of the incidence matrix by means of linear composition
of other rowsin order to fill columnswith zeros. Every
such step can be interpreted as a reduction of the Petri
net that isolates the place corresponding to the column
being filled with zeros (see the reduction rule R1 in
[13]). Let the agorithm for finding T-invariants in the

net 2123 first zeroes the columnsthat correspond to the
places S,. Then, rows of the resultant incidence matrix
correspond to transitionsfrom T, [J T, and T5. Note that

this matrix corresponds to the net 5125 Hence, further
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operation of the algorithm will lead to the set of invari-
ants that simultaneously correspond to the nets X123

and 515, 5. Similarly, it can beshown that T, 0 (T, 0 To) =
T, 0T, 0 Ts. Thus, theequality T, O (T, O T3) = (T, O
T,) O T5 holds.

This result allows us to write (E; 4|z E; | E3) and
to compose the nets without taking care of the order of
the operations.

8. CONCLUSION

In this paper, the notions of the Petri net entity and
the entity composition have been introduced. The Petri
net entity is an extension to the labeled Petri net;
instead of a single label, it uses severa labels called
access points of the entity. This extension allows map-
ping of asingle physical event (transition firing) to sev-
eral logical events related to communication with other
objects. Initsturn, this hasrequired the extension of the
notion of the label to the multilabel, which maps asin-
gle transition to amultiset of symbols.

The composition operation makesit possible to sup-
port the compositional style of system development
and verification. Indeed, it makes possible to develop
individual parts of the system independently and, then,
to compose them. Moreover, since the composition is
congruent, it is possible to replace subsystems by
equivalent ones without changing the overall behavior
of the system. This can be helpful when using the step-
wise refinement for the system design. In papers[1, 8],
it is shown how this principle can be used for hierarchi-
cal composition of protocols.

We believe that the possibility to schematically rep-
resent the structure of Petri net entities is of practical
significance. Indeed, the top-down development
implies that the developer first represents the system
schematically as a structure of entities, whichisconsis-
tent with the commonly accepted paradigm of designin
terms of units and connections. Units can be nested at
any structural level. At the next stage, theinternal struc-
ture of the blocks from the deepest level is determined
in terms of Petri nets. Note that this design is formal at
all stages. In papers [8-10], some results on the appli-
cation of this approach to the development of actual
concurrent and distributed systems are presented.

Let us outline the problems that should be solved in
order to make possible the application of the composi-
tional Petri nets to solving practical problems.

(8 A more elaborated set of operations over Petri
nets is necessary for the construction of internal struc-
ture of entities. This set may contain sequential compo-
sitions, iterations, selections, and the like. In this
respect, it may be reasonable to extend the notion of the
access point to Petri net places.

(b) To further improve practical characteristics of
the formalism, it should be extended to high-level Petri
nets; its relations to concurrent programming and spec-
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ification languages must be established; and appropri-
ate automation tools are to be devel oped.

ACKNOWLEDGMENTS

Thiswork was supported by the Ministry of Science
of the Russian Federation, project no. 0201.01.225.

REFERENCES

1. Anisimov, N.A., Hierarchical Composition of Protocols,
Avtom. Wechidl. Tekh., 1990, no. 1, pp. 3-10.

2. Achasova, S.M. and Bandman, O.L., Korrektnost’ par-
allel’nykh vychidlitel’nykh protsessov (Correctness of
Parallel Computational Processes), Novosibirsk: Nauka,
1990.

3. Kotov, V.E., Seti Petri (Petri Nets), Moscow: Nauka,
1984.

4. Protokoly informatsionno-vychidlitel’ nykh setei. Sprav-
ochnik (Protocols of Information Computational Net-
works. Handbook), Mizina, 1.A. and Kuleshova, A.P,
Eds., Moscow: Radioi Svyaz’, 1990.

5. Hoare, C., Communicating Sequential Processes, Engle-
wood Cliffs: Prentice-Hall, 1985. Translated under the
title Vzaimodei stvuyushchie posledovatel’ nye protsessy,
Moscow: Mir, 1989.

6. Alaiwan, H. and Toudic, JM., Recherche de Semiflots, des
Verrous et Trappes dans les Reseaux de Petri, Technique Et
Sciences Informatiques, 1985, val. 4, pp. 103-112.

7. Anisimov, N.A., A Petri Net Entity as a Formal Model
for LOTOS, a Specification Language for Distributes
and Concurrent Systems, Parallel Computing Technol o-
gies, Mirenkov, N.N., Ed., Singapore: World Sci., 1991,
pp. 440-450.

8. Anisimov, N.A. and Koutny, M., On Compositionality
and Petri Nets in Protocol Engineering, Protocol Speci-
fication, Testing and Verification, XV, Dembinski, P. and
Sredniawa, M., Eds., Chapman & Hall, 1996, pp. 71-86.

9. Anisimov, N.A., Kovalenko, A.A., Tarasov, G.V., Inzart-
sev, A.V,, and Sherbatyuk, A.Ph., A Graphical Environ-
ment for AUV Mission Programming and Verification,
Proc. of the 10th Int. Symp. on Unmanned Untethered
Submersible Technology, New Hermpshire, USA, 1997,
pp. 394-405.

10. Anisimov, N.A., Kovalenko, A.A., Postupalski, PA., and
Vuong, S.T., Application of Compositional Petri Nets
and PN®—Tool to the Specification of Distributed Mul-
timedia Objects, Advances in Distributed Multimedia
Systems, Chang, S.K. et al., Eds., Singapore: World Sci.,
1999, pp. 99-116.

11. Barbeau, M. and Bochmann, G.V., A Subset of Lotos
with Computational Power of Place/Transition Nets,
Lecture Notes in Computer Science, 1993, vol. 691,
pp. 49-68.

12. Baumgarten, B., Ochsenschldger, P, and Prinoth, R.,
Building Blocks for Distributed System Design, Proto-
col Specification, Testing, and Verification, Diaz, M., Ed.
(Proc. of the V IFIP WG 6.1 Conf.), North-Holland:
Elsevier, 1986, pp. 19-38.

13. Berthelot, G., Roucairol, G., and Valk, R., Reduction of
Nets and Parallel Programs, Lecture Notes in Computer
Science, 1980, vol. 84, pp. 277-290.

No. 6 2001



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

COMPOSITIONAL PETRI

Bergstra, JA. and Klop, JW., Algebra of Communicat-
ing Processes, in Math. on Comput. Sci. (Proc. CWI
Symp.), 1986, pp. 89-138.

Bernadinello, L. and De Cindio, F., A Survey of Basic
Net Modelsand Modular Classes, Lecture Notesin Com-
puter Sciences, Springer, 1992, vol. 609, pp. 304—351.
Best, E., Devillers, R., Kiehn, A., and Poméllo, L., Con-
current Bisimulations in Petri Nets, Acta Informatica,
1991, vol. 28, pp. 231-261.

Best, E., Devillers, R., and Hall, J.G., The Box Calculus:
A New Causal Algebrawith Miltilabel Communication,
Lecture Notes in Computer Sciences, Springer, 1992,
vol. 609, pp. 21-69.

Bolognesi, T. and Brinksma, E., Introduction to the SO
Specification Language LOTOS, Comput. Networks
ISDN Systems, 1987, vol. 14, pp. 25-89.

Cherkasova, L.A. and Kaotov, V.E., Structured Nets, Lec-
ture Notes in Computer Sciences, Springer, 1981,
vol. 118, pp. 242-251.

Van Glabbeek, R.J., The Linear Time—Branching Time
Spectrum, Lecture Notes in Computer Sciences, Berlin:
Springer, 1990, val. 458, pp. 278-297.

Van Glabbeek, R.J. and Vaandrager, F.W., Petri Net
Models for Algebraic Theories of Concurrency, Lecture
Notes in Computer Sciences, Springer, 1987, vol. 259,
pp. 224-242.

Goltz, U., On Representing CCS Programs by Finite
Petri Nets, Lecture Notes in Computer Sciences,
Springer, 1988, val. 324, pp. 339-350.

Hopkins, R., Hall, J., and Botti, O., A Basic-Net Algebra
for Programs Semantics and Application to OCCAM,
Lecture Notes in Computer Scences, Springer, 1992,
vol. 609, pp. 179-214.

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 27

24

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

No. 6

NET APPROACH 319
High-Level Petri Nets. Theory and Application, Jensen,
K. and Rozenberg, G., Eds., Springer, 1991.

Kotov, V.E., An Algebra for Parallelism Based on Petri
Nets, Lecture Notes in Computer Sciences, Springe,
1978, vol. 64, pp. 39-55.

Mauw, S. and Vdtink, G.J., A Process Specification For-
malism, Fundamenta Informaticae X111, 1990, pp. 85-139.
Milner, R., A Calculus for Communication Systems,
Lecture Notes in Computer Sceinces, Springer, 1980,
vol. 92,

Olderog, E.-R., Operational Petri Net Semantics for
CCSP, Lecture Notes in Computer Sciences, Springer,
1984, vol. 266.

Pomello, L., Rozenberg, G., and Simone, C., A Survey of
Equivalence Notions for Net Based Systems, Lecture
Notes in Computer Sciences, Springer, 1992, vol. 609.
Lecture Noteson Petri Nets. Parts| and 11, Lecture Notes
in Computer Sciences, Reising, W. and Rozenberg, G.,
Eds., Springer, 1998, vols. 1491-1492.

Advancesin Petri Nets 1992, Lecture Notesin Computer
Sciences, Rozenberg, G., Ed., Springer, 1992, vol. 609.
Taubner, D., Finite Representation of CCS and TCSP
Programs by Automata and Petri Nets, Lecture Notes in
Computer Sciences, Springer, 1989, vol. 369.

Valette, R., Analysis of Petri Nets by Stepwise Refine-
ments. J. Comput. System <ci., 1979, val. 18, pp. 35-46.
Vogler, W., Failures Semantics and Deadlocking of
Modular Petri Nets, Acta Informatica, 1989, vol. 26,
pp. 333-348.

Voss, K., System Specification with Labelled Nets and
the Notion of Interface Equivalence, Arbeitspapiere Der
GMD, 1986, val. 221.

2001



