

0361-7688/01/2706- $25.00 © 2001

åÄIä “Nauka

/Interperiodica”0309

Programming and Computer Software, Vol. 27, No. 6, 2001, pp. 309–319.
Original Russian Text Copyright © 2001 by Anisimov, Golenkov, Kharitonov.

1. INTRODUCTION

It is well known that the formal approach is essential
for the development of concurrent and distributed sys-
tems. Yet, a formal model can be used in practice only
if it is

concurrent, structured

, and

abstract

 [28]. Unfor-
tunately, none of the existing formalisms has all these
properties in full measure.

Indeed, although concurrent algebraic languages
such as CCS [27], TCSP [5], and ACP [14] and their
application-oriented versions LOTOS [18], occam
[23], and PSF [26] are abstract and structured, they are
not appropriate for representing concurrency. In partic-
ular, they treat concurrency of two events as interleav-
ing, i.e., sequential firing of all possible event
sequences. For instance, concurrency of events

a

 and

b

is defined as firing of either the sequence

ab

 or the
sequence

ba

; this is definitely a limited understanding
of concurrency, because it does not allow for simulta-
neous firing of events.

Another group of formalisms, which is based on
Petri net theory [3, 30], makes it possible to represent
concurrency in a more appropriate and natural way.
However, these formalisms are neither abstract nor
structured, which hinders their application to a wide
range of practical problems. In recent years, serious
researches have been conducted in order to overcome
these drawbacks. Some of them are focused on replac-
ing the interleaving semantics of algebraic languages
with the semantics of the so-called “true” concurrency
based on net models. Such attempts were made for
CCS [22, 32], TCSP [28, 32], ACP [21], as well as for

the LOTOS [11] and occam [23] languages. It should
be noted that these approaches faced serious difficul-
ties, because abstract concurrent algebraic languages
had been initially designed without net semantics in
mind. Among other things, they all are as expressive as
the Turing machine, whereas Petri nets are less expres-
sive [3]. This disagreement stimulates search for sub-
sets of abstract languages the semantics of which could
be expressed in terms of Petri nets [11, 22].

Another approach to the same problem is to make
Petri nets structured and abstract without regard to any
languages. Works in this direction try to enrich compo-
sitional capacities of Petri nets by defining the notion of
interface for a Petri net and a set of composition rules
[15]. Several papers employed places for such an inter-
face [19, 25, 33], and others employed transitions [12,
34, 35]. Composition of nets was performed by merg-
ing places or transitions respectively. The major
advances in this direction were made in the framework
of the Caliban project and the earlier DEMON project
[31] of the European Program Esprit. The result of
these researches is the Petri Box Calculus (PBC) dis-
cussed in [17].

The PBC model, called

Petri box

, is essentially a
Petri net with an interface defined as a labeling func-
tion. This function maps a net transition to a multiset of
elementary actions. The operator of net synchroniza-
tion uses this information to generate a set of synchro-
nization transitions by merging communicating transi-
tions. It is assumed that an elementary action is the

Compositional Petri Net Approach to the Development
of Concurrent and Distributed Systems

N. A. Anisimov, E. A. Golenkov, and D. I. Kharitonov

Institute for Automation and Control Processes, Far Eastern Division, Russian Academy of Sciences,
ul. Radio 5, Vladivostok, 690041 Russia

e-mail: demiurg@iacp.vl.ru

Received November 10, 2000

Abstract

—In the paper, a formal model based on Petri nets is proposed in the context of a compositional
approach to the development and analysis of complex concurrent and distributed systems. Mutlilabels of Petri
nets are introduced allowing labeling a transition not only with a single symbol, but also with a multiset of sym-
bols. Operations on multilabeled Petri nets—parallel composition and restriction—are defined. A definition of
a Petri net entity is given based on the notion of multilabels. A Petri net entity is a Petri net with a set of multi-
labels, where each multilabel is regarded as an access point of the entity. The operation of entity composition
is introduced. Equivalence of entities is defined based on bisimulation equivalence of Petri nets. It is shown that
the equivalence relation is congruent with respect to entity composition. It is also demonstrated that the com-
position operation is commutative and associative.

Key words:

 concurrent systems, distributed systems, Petri nets, Petri net entity, compositionality.

310

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 27

No. 6

2001

ANISIMOV

et al

.

name of a communication channel, which may have
parameters.

The next step along this line is further structuring of
events, which makes it possible to determine communi-
cation directions more explicitly. This approach allows
for the nature of distributed systems, where the devel-
oper has to specify system units and their interaction.
The notion of the Petri net entity, which is a generaliza-
tion of labeled Petri nets, was introduced within this
framework. The single labeling function is replaced by
several ones called access points. Each access point
maps a transition to a multiset of names, where each
name is treated as an elementary operation of commu-
nication with other entities. As compared to PBC, the
communication directions are determined explicitly,
which results in splitting a single labeling function into
several ones.

The Petri net entity (without a multilabel) was first
introduced in [1] and elaborated in [7, 8]. However, in
these papers, the emphasis was on application of the
formalism to design of computer network protocols.
This paper is devoted to further development of the
technique of Petri net entities, its formal definition, and
its generalization to multilabeled entities.

2. MULTILABELING PETRI NETS

Let

A

 = {

a

1

,

a

2

, …,

a

k

} be some set. A multiset over
the set

A

 is a function

µ

:

A

 {0, 1, 2, …} associating
each element of the set

A

 with a nonnegative integer.
Sometimes, it is convenient to represent a multiset over
the set

A

 as a formal sum

n

1

a

1

 +

n

2

a

2

 + … +

n

k

a

k

 or

a

i

, where

n

i

 =

µ

(

a

i

) is the number of occurrences
of

a

∈

A

 in the multiset. As a rule, members of the sum
with

a

i

 = 0 are dropped. The union and intersection of
two multisets

µ

1

 =

n

1

a

1

 + … +

n

k

a

k

and

µ

2

 =

m

1

a

1

 + … +

m

k

a

k

 over the set

A

 are defined as

µ

1

 +

µ

2

 = (

n

1

 +

m

1

)

a

1

 +
… + (

n

k

 +

m

k

)

a

k

 and

µ

1

 –

µ

2

 = (

n

1

 –

m

1

)

a

1

 + … + (

n

k

 –

m

k

)

a

k

, respectively; intersection is defined only when

n

i

 –

m

i

≥

 0 for all 1

≤

i

≤

k

. We write

µ

1

≤

µ

2

 if

n

i

≤

m

i

for any 1

≤

i

≤

k

, and we write

µ

1

 <

µ

2

 if

µ

1

≤

µ

2

 and

µ

1

≠

µ

2

. If ni = 0 for all i, such a multiset is denoted by 0. We
write a ∈ µ if ∃ n > 0: (a, n) ∈ µ.

The set of all finite multisets over the set A is desig-
nated by }(A). The set of all possible sequences of
symbols from the set A, including the empty string e, is
denoted by A*.

Suppose that f: A B is a function, and X ⊆ A.
Then f  X is the projection of f on X defined as f  X =
{(a, b) ∈ f | a ∈ X}.

Definition 2.1. A Petri net is a set Σ = 〈S, T, •(), ()•,
M0〉 , where

(1) S is a finite set of places;
(2) T is a finite set of transitions such that S ∩ T = ∅ ;
(3) •() : T }(S) is an input incidence function;
(4) ()• : T }(S) is an output incidence function;

ni∑

(5) M0 ∈ }(S) is an initial marking.
The multisets •t and t• are called the input and output

sets of the transition t ∈ T, respectively. The functions
•() and ()• can be naturally extended to multisets:
•(n1t1 + … + nktk) = t1 + … + tk, (n1t1 + … + nktk)• =

n1 + … + nk .

In what follows, we use traditional graphic repre-
sentation of a Petri net as a bipartite graph, where cir-
cles denote places and rectangles denote transitions.
Places and transitions are linked by directed arcs repre-
senting the input and output incidence functions. The
weight of arcs is specified by integers placed near arcs.
Marking is depicted by tokens positioned inside places.

In this paper, we use step semantics of Petri nets
based on firing of sequences of transition multisets.

The marking M of the net Σ = 〈S, T, •(), ()•, M0〉 is a
multiset over S; i.e., M ∈ }. We say that a step (a tran-
sition multiset) Θ ∈ }(T) is enabled in the marking M
if •Θ ≤ M. The step Θ ∈ }(T) enabled in the marking
M can fire yielding a new marking M ', which is denoted
as M[Θ〉M ', where M ' = M – •Θ + Θ•. It should be noted
that, if the step Θ is enabled in the marking M, then the
step Θ' < Θ is also enabled in the marking M. If Φ =
Θ1Θ2…Θn ∈ (}(T))*, then M[Θ〉M ' denotes that there
is a sequence M1, M2, …, Mn – 1 such that
M[Θ1〉M1[Θ2〉…Mn – 1[Θn〉M '. In this case, we say that
M ' is reachable from M. M[〉M ' denotes that there is
Φ ∈ }(T)* such that M[Φ〉M '. The set of all markings
reachable from M is defined as [M〉 = {M ' | M[〉M '}. If
the net to which the statement refers is to be indicated,
an appropriate prefix should be used. For instance, Σ:
M[Φ〉M ', Σ1 : M ≤ •Θ.

Let ∆ be a finite alphabet of names and = { | a ∈
∆} be an associated alphabet of complementary names.
In other words, we define a one-to-one correspondence

: ∆ between the names and their complemen-
tary names. For the sake of simplicity, the inverse func-
tion is denoted by the same symbol: : ∆.

Thus, we have = a. Let τ ∉ }(∆ ∪) be a special
symbol associated with an invisible action. Denote Vis =
∆ ∪ and Act = }(Vis) ∪ {τ}. The function can be

extended to the multiset of names =

n1 + … + nk . For example:

Definition 2.2. A label of a Petri net Σ = 〈S, T, •(),
()•, M0〉 is the tuple λ = 〈∆ , σ〉, where ∆ is some alphabet
and σ: T Act is a labeling function.

This definition is an extension of a well-known def-
inition of the labeling function. In particular, every
transition can be labeled not only with a single symbol
but also with a multiset of symbols. A transition labeled
by τ is considered an invisible or internal transition.

n1
• nk

•

t1
• tk

•

∆ a

·– ∆

·– ·– ∆

a= ∆

∆ ·–

n1a1 … nkak+ +

a1 ak

a 2a 3b c+ + + a 2a 3b c.+ + +=

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

COMPOSITIONAL PETRI NET APPROACH 311

On the physical level, a label denotes elementary
communication. For example, the symbol a ∈ ∆ is
assumed to correspond to sending a message with the
name a, and the complementary symbol , to receiving
a message with the name a. The symbol τ is not related
to the communication but describes some internal
event. If a transition is labeled with a multiset of sym-
bols, the latter corresponds to simultaneous receiving
and/or sending messages upon firing the transition.
Thus, if σ(t) = + 2b, then the message a is received
and two messages b are sent when the transition t fires.

Let us show how the labeling function σ is extended
to the multiset of transitions, σ: }(T) Act. If Θ =

 ∈ }(T), then σ(Θ) = (ai). If every tran-
sition t in the step Θ is invisible, i.e., σ(t) = τ, we write
σ(Θ) = τ.

The function σ can be naturally extended to the
homomorphism σ: (}(T))* (}(Act))*. Define the
function σ+: (}(T))* (Vis)* eliminating all sym-
bols τ from sequences:

In what follows, the symbol Θ denotes a step and the
symbol Φ denotes a sequence of steps.

If W ∈ (}(Vis))* and λ = 〈∆λ, σλ〉 are labels of the
Petri net Σ, then M(W〉λM ' denotes that Φ ∈ (}(T))*:

M[Φ〉M ' and (Φ) = W. For the sake of brevity, the
sequence M[Φ〉M ' σ(Φ) = e is written as M ⇒ M ', and
the symbol ⇒ denotes an invisible sequence of steps.

Definition 2.3. Suppose that Σ1 = 〈S1, T1, •()1, ,
M01〉 is a net and α = 〈∆α, σα〉 is its label. Then the α-
restriction of the net Σ is a new net Σ = ∂α(Σ1) satisfying
the following conditions:

(1) S = S1;
(2) T = T1\{t ∈ T | σα(t) ≠ τ};
(3) •(t) = •(t)1, t ∈ T;

(4) (t)• = (t , t ∈ T;

(5) M0 = M01.
Less formally, a restriction of the net eliminates

each transition labeled by a name from Vis together
with the adjacent arcs. Figure 1 illustrates this opera-
tion. Here, the transitions t1 and t3 labeled by names
from Vis are eliminated, and the invisible τ-transition
remains.

Suppose that, for the net Σ = ∂α(Σ1), there are two
labels α = 〈∆α, σα〉 and β = 〈∆β, σβ〉. The label β for the net

Σ can be naturally restricted as follows: = 〈∆β, σβ  T〉.

a

a

niai∑ niσ∑

σ+ Θ()
e, if σ Θ() τ ;=

σ Θ(), otherwise;



=

σ+ ΦΘ() σ+ Φ()σ+ Θ().=

σλ
+

()1
•

)1
•

β̃

We will write β instead of when this does not result
in any confusion.

Proposition 2.4. Let Σ be a net and α and β be its
labels. Then, the following equality holds: (∂β(N)) =

(∂α(N)).

Proof. Divide T into four disjoint subsets: T = T11 ∪
T12 ∪ T21 ∪ T22, where

This proposition makes it possible to extend the
restriction operation to the set of labels.

Definition 2.5. Let Σ be a Petri net and H = {α1, α2,
…, αn} be a set of its labels. Then, ∂H(Σ) = ° °
… ° (Σ).

3. CONCURRENT COMPOSITION
OF MULTILABELED PETRI NETS

Concurrent composition is a very important part of
the compositional approach, since it allows construct-
ing systems with interacting components. There are
several definitions of this operation for Petri nets [21,
22, 25, 32]. These definitions are applicable only for
one-to-one communications, i.e., when a transition of
one net is merged with at most one transition of another
net. However, we need a generalized concurrent com-

β̃

∂α̃

∂β̃

T11 t T | σα t() τ σβ t()≠ ≠∈{ } ,=

T12 t T | σα t() τ σβ t()=≠∈{ } ,=

T21 t T | σα t() τ σβ t()≠=∈{ } ,=

T22 t T | σα t()∈ τ σ β t()= ={ } ,=

∂α̃ ∂β Σ()() ∂α̃ 〈 S T \T12 T22∪,(),=

() •  T11 T21∪(), ()•  T11 T21∪() M0〉),

= S T11 () •  T11 ()•  T11 M0,,, ,〈 〉

∂β̃ ∂α̃ Σ()() ∂β̃ 〈 S T \T21 T22∪,(),=

() •  T11 T12∪(), ()•  T11 T12∪() M0〉),

= S T11 () •  T11 ()•  T11 M0,,, ,〈 〉 .

∂α1
∂α2

∂αn

t1 t2 t2t3a a– τ

τ

Fig. 1. Application of the restriction operation.

312

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

ANISIMOV et al.

position for the case of the multicommunication consis-
tent with the definition of a multilabel.

Suppose that Σ1 = 〈S1, T1, •()1, , M01〉 and Σ2 = 〈S2,

T2, •()2, , M02〉 are two Petri nets. Suppose also that
the nets Σ1 and Σ2 have disjoint sets of places and tran-
sitions; i.e., S1 ∩ S2 = T1 ∩ T2 = ∅ .

Definition 3.1. Let Σ1 and Σ2 be Petri nets with
labels α = 〈∆α, σα〉 and β = 〈∆β, σβ〉 , respectively. Con-
current composition of the nets Σ1 and Σ2 with respect
to α and β is a new net Σ = (Σ1 α|β Σ2) such that

(1) S = S1 ∪ S2;
(2) T = T1 ∪ T2 ∪ T1 α⊗ β T2, where

T1 α⊗ β T2 = {µ1 + µ2 | µ1 ∈ }(T1), µ2 ∈ }(T2),

τ ∉ σ α(µ1) = , the sum µ1 + µ2 is minimal};

(3) •() = •()1 ∪ •()2 ∪ {(µ1 + µ2, •(µ1)1 + •(µ2)2) | µ1 +
µ2 ∈ T, µ1 ∈ }(T1), µ2 ∈ }(T2)};

(4) ()• = ∪ ∪ {(µ1 + µ2, (µ1 + (µ2) | µ1 +
µ2 ∈ T, µ1 ∈ }(T1), µ2 ∈ }(T2)};

(5) M0 = M01 + M02.

The sum µ1 + µ2 is minimal if there is no sum +

 such that + < µ1 + µ2 and σα(µ1) = .

Less formally, two nets Σ1 and Σ2 are merged, and
new synchronization transitions T1 α⊗ β T2 are added.
These new transitions are specified by multisets of
symbols µ1 + µ2, µ1 ∈ }(T1), µ2 ∈ }(T2). For new tran-
sitions, their input and output multisets are computed:
•(µ1 + µ2) = •(µ1) + •(µ2), (µ1 + µ2)• = (µ1)• + (µ2)•.
When it does not result in ambiguity, we use T1 ⊗ T2
instead of T1 α⊗ β T2.

Figure 2 gives an example of concurrent composi-
tion. In this example, three synchronization transitions
are added. The first transition is (t1 + 2t2) + 2t3, where

σα(t1 + 2t2) = = 2a + 2 ; the second one is

()1
•

()2
•

σβ µ2()

()1
• ()2

•)1
•)2

•

µ1'

µ2' µ1' µ2' σβ µ2()

σβ 2t3() b

(t1 + t2) + (t3 + t4) with σα(t1 + t2) = = 2a +

; and the third one is t1 + 2t4 with σα(t1) = =
2a. If, e.g., t4 is renamed with τ, the second and the third
synchronization transitions are not formed.

Obviously, the operation of concurrent composition
introduced above becomes practically useful if we sup-
plement it with a procedure for computing the set of
synchronization transitions T1 ⊗ T2. It turns out that this
problem can be reduced to the well-known problem of
finding the set of minimal invariants for a Petri net [2].

Theorem 3.2. Finding synchronization transitions.
The problem of finding the set of synchronization tran-
sitions for parallel composition of Petri nets can be
reduced to the problem of finding the least set of invari-
ants of the Petri net.

Proof. Let α = 〈∆α, σα〉 and β = 〈∆β, σβ〉 be labeling
functions of Petri nets Σ1 and Σ2 respectively. Let ∆ =

∆α ∪ ∆β, T1 = { , , …, }, and T2 = { , , …, }.

Construct a new Petri net as follows: = 〈∆ , T1 ∪ T2,
•(), ()•, M0〉 , where M0 = 0,

Here, the projection σ+(t)  ∆ preserves only direct

names from ∆. Note that, when the transition fires,

  ∆ is added to the current marking and  ∆

is removed from it. When the transition fires, (t)

 ∆ is added to the current marking and  ∆ is
removed from it. Therefore, it is possible to return to

σβ t3 t4+()

b σβ 2t4()

t1
1 t2

1 tn
1 t1

2 t2
2 tm

2

Σ̃12

t()• σα
+ t()  ∆, if t T1;∈

σβ
+ t()  ∆, if t T2;∈




=

t()• σα
+ t()  ∆, if t T1;∈

σβ
+ t()  ∆, if t T2.∈

=

ti
1

σα
+ ti

1() σα
+ ti

1()

t j
2 σβ

+

σβ
+ t()

t1

2a

t2

t3

t4

b
–

a–

a + b–

α β

t1

t2

t3

t4

t1+ 2t2+ 2t3

t1+ t2+ t3+ t4

t1+ 2t4

2

2

2

2
2

2

Fig. 2. Concurrent composition of Petri nets.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

COMPOSITIONAL PETRI NET APPROACH 313

the zero marking by firing the sequence v ∈ (T1 ∪ T2)*,

M0 |v 〉M0 only if σα(x) = . Here, x and y are mul-
tisets of transitions from T1 and T2 occurring in v. On
the other hand, it is known that, if there is v ∈ (T1 ∪
T2)*: M0[v 〉M0, then the eigenvector v is a T-invariant.
Moreover, if x + y is minimal, the eigenvector of the

multiset x + y is the minimal T-invariant of the net .
Next, invariants containing no transitions from T1 or T2
are removed from the set obtained. This is necessary
since we are concerned only in the communication
between the nets rather than in autocommunication,
when the net communicates with itself.

Thus, to generate the set of the synchronization tran-
sitions T1 ⊗ T2, it is necessary to construct the net Σ12
and compute its set of minimal T-invariants. Every such
invariant f = 〈 f1, …, fn + m〉 produces one synchroniza-

tion transition f1 + … + fn + fn + 1 + … + fn + m .
There are many algorithms of finding T-invariants for
Petri nets based on the Farcas algorithm. Some of them
are discussed in [2]. In the general case, the problem of
computing the set T1 ⊗ T2 has exponential complexity,
although, some heuristics may be used to simplify the
problem [6].

Back to Fig. 2, it is possible to construct a net

(see Fig. 3). It can be easily seen that the net has
three minimal invariants: t1 + 2t4, t1 + 2t2 + 2t3, and t1 +
t2 + t3 + t4.

Now, we need to define an extension of a label γ of
the net Σ1 to the net (Σ1 α|β Σ2), which will be denoted
by .

Definition 3.3. Suppose that α = 〈∆α, σα〉 and γ =
〈∆γ, σγ〉 are labels of the net Σ1 and β = 〈∆β, σβ〉 is a label
of the net Σ2. Then, the extension of γ to the net (Σ1 α|β
Σ2) is the label = 〈∆γ, 〉 , where

In other words, the label of transitions from T1
remains unchanged, the label of the synchronization
transition t ∈ T1 ⊗ T2 in γ is defined as a sum of labels
of the corresponding transitions, and transitions from
T2 are labeled by τ.

We will need projection functions for the synchroni-
zation transition of the resulting net Σ = (Σ1 α|β Σ1).
These projections ν1: T1 ⊗ T2 }(T1) and ν2: T1 ⊗
T2 }(T2) are defined as follows. Let t = µ1 + µ2 ∈
T1 ⊗ T2, where µ1 ∈ }(T1) and µ2 ∈ }(T2). Then,
ν1(t) = µ1 and ν2(t) = µ2. Hence, we can write t = µ1(t) +
µ2(t). It is also possible to naturally extend ν1 and ν2 to

σβ y()

Σ̃12

t1
1 tn

1 t1
2 tm

2

Σ̃12

Σ̃12

γ̃

γ̃ σ̃γ

σ̃γ σγ t τ,() | t T2()∈{ }∪=

∪ x y+ σγ x(),() | x y+ T1 T2,⊗∈{

x } T1() y } T2() } .∈,∈

the transition multisets νi: }(T1 ⊗ T2) }(Ti), i ∈
{1, 2} as follows: νi(Θ) = (t)νi(t).

Next, the following dependences are established
between the behavior of the initial nets and the result-
ing nets.

Proposition 3.4. Let Σ = (Σ1 α|β Σ2) be a composition

of Petri nets. Suppose also that M1, ∈ }(S1) and

M2, ∈ }(S2).

(1) If Θ ∈ T1 ⊗ T2 and Σ: M1 + M2[Θ〉 + , then

Σ1: M1 [ν1(Θ)〉 and Σ2: Μ2 [ν2(Θ)〉 .

(2) If Σ1: M1[Θ1〉 , Σ2: M2 [Θ2〉 and τ ≠ σα(Θ1) =

, then there exists Θ ∈ T1 ⊗ T2: ν1(Θ) = Θ1,
ν2(Θ) = Θ2.

Proof follows from the definition of entity composi-
tion.

The first part of Proposition 3.4 says that each firing
of the step Θ in the resulting net corresponds to the fir-
ing of the steps Θ1 and Θ2 in the initial nets; the latter
steps are projections of the former one: Θ1 = ν1(Θ) and
Θ2 = ν2(Θ). The second part says that, if the steps Θ1
and Θ2 can fire in the initial nets with the same visibility

status, i.e., σα(Θ1) = , then, in the resulting net,
the step Θ whose projections are the initial steps Θ1 and
Θ2 can fire.

4. FORMAL DEFINITION
OF A PETRI NET ENTITY

As it was mentioned in Introduction, a Petri net
entity is a logical unit with several access points intended
for communication with other units. A Petri net entity
can be represented schematically as a rectangle with out-
going lines denoting access points. Figure 4a gives an
example of schematic representation of an entity.
Below is the formal definition of a Petri net entity.

Definition 4.1. A Petri net entity (PN entity or just
entity for the sake of brevity) is a tuple E = 〈Σ, Γ〉 such
that

(1) Σ = 〈S, T, •(), ()•, M0〉 is a Petri net called the
structure of the entity;

Θ∑

M1'

M2'

M1' M2'

M1' M2'

M1' M2'

σβ Θ2()

σβ Θ2()

t1 t2

t3 t4

a b

2

Fig. 3. An example of construction of the net .Σ̃12

314

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

ANISIMOV et al.

(2) Γ = {α1, α2, …, αn} is a set of access points,
which each point having the form αi = 〈idi , λi 〉 , where

(a) idi is the name of the access point αi and
(b) λi = 〈∆ i , σi 〉 is the multilabel of the net Σ.
In what follows, the PN entities are denoted by (pos-

sibly indexed) letters E, F, and G; the access points are
denoted by Greek letters α, β, and γ. The set of names
of the entity E = 〈Σ, Γ〉 is defined by means of the func-
tion Id(E) = {ida | α ∈ Γ}. We often write αi = 〈idi , ∆i ,
σi 〉 . Thus, each access point αi is defined by its name
idi , an alphabet ∆i of names, and a labeling function σi

mapping each transition either to a symbol τ or to a

multiset over the set ∆i ∪ .

The definition of the entity requires some explana-
tions. A PN entity is nothing but a Petri net with a set of
multilabels; i.e., the entity generalizes the notion of
labeled Petri nets. Communication with an entity is
possible only through its access points. In particular,
watching the behavior of the net is a special case of
communication. Clearly, an entity may behave differ-
ently in different access points. A transition labeled by
τ in some access point is invisible in this access point
and cannot be used for the communication with the
entity. The same transition can be simultaneously visi-
ble in several access points, but possibly under different
names. Moreover, a transition can be visible in one
point and invisible in another. Finally, a transition can
be invisible in all access points.

An entity E with access points α1, …, αn is denoted
by E[α1, …, αn]. Graphically, the entities are repre-
sented as Petri nets where each transition is labeled by
the set 〈α 1, …, αn〉 ∈ Act1 × … × Actn. Obviously, the
choice of sets S and T in the entity definition is not
important from the standpoint of external behavior of
the net; hence, the entity is defined up to isomorphism.

Figure 4 gives an example of the schematic and net
representations of an entity of a simple protocol. The
entity has three access points. The points Su and Sl pro-

∆i

vide access to services of higher and lower levels. They
are defined over the alphabets ∆Su = {uCon, uDis,
uDat} and ∆Sl = {lCon, lDat, lAck, lDis]. The access
point Tm is intended for communication with the timer
entity and is defined on the alphabet ∆Tm = {ON, OFF,
EXP}.

Another example of an entity is given in Fig. 5. The
entity specifies the mechanism of protocol timeout. It
has one access point defined on the alphabet ∆us = {ON,
OFF, EXP}, where labels correspond to switching on
the timeout (ON), switching it off (OFF), and its expi-
ration (EXP).

5. COMPOSITION OF PN ENTITIES

In this section, we introduce entity composition,
which makes it possible to create complex structures
from simpler ones. First, we present an auxiliary nor-
malization procedure.

Definition 5.1. Suppose that E = 〈Σ, Γ is an entity
with access points α, β ∈ Γ〉 such that idα = idβ. The
union of these access points is a new point γ = 〈idγ, ∆γ,
αγ〉 such that idγ = idα = idβ, ∆γ = ∆α ∪ ∆β, and, for any
t ∈ T,

The union of all access points with identical names
is called α-normalization of the entity and is denoted by
α – norm(E).

In what follows, we assume that all objects are α-
normalized.

Definition 5.2. Suppose that E1 = 〈Σ1, Γ1〉 and E2 =
〈Σ2, Γ2〉 are entities given in the normal form and α ∈
Γ1 and β ∈ Γ2 are their access points such that idα = idβ.
Then, the composition of E1 and E2 with respect to α

σγ

σα t(), if σβ t() τ ;=

σβ t(), if σα t() τ ;=

σα t() σβ t(), otherwise.+

=

〈τ , EXP, lDat〉
Su

Sl

Tm

(i) (ii)

〈τ , OFF, lAck〉

〈uDat, ON, lDat〉
〈uDis, τ, lDis〉

〈uCon, τ, lCon〉

〈τ , τ, lDis〉

E[Su, Tm, Sl]

E

Fig. 4. A sample entity.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

COMPOSITIONAL PETRI NET APPROACH 315

and β is the entity E ' = (E1 α||β E2) = α – norm(E), where
E = 〈Σ, Γ〉 and

(1) Σ = (Σ1 α|β Σ2);

(2) Γ = { | γ ∈ Γ1 ∪ Γ1\{α, β}}, where = 〈idγ,

〉 (see Definition 3.3 of label extension).
Less formally, the structure of the resultant entity is

constructed as follows.
(1) The composition of the Petri nets Σ1 and Σ2 with

respect to the access points α and β is computed.
(2) The restriction of the resultant net is computed in

the points α and β (strictly speaking, in their extensions

 and). It is worth noting that the transitions that do
not participate in the composition, though visible in
these access points, are also eliminated. This is consis-
tent with the informal understanding of the transition
label: a transition is labeled only for communication. If
it is labeled but do not participate in communication, it
should be eliminated.

(3) The access points that do not participate in the
composition are extended to the entire resultant net and
are united to form the resultant set of access points.

(4) The access points participating in the composi-
tion (α and β) are eliminated.

(5) The resultant entity E is α-normalized, since the
union of the access points may contain two points with
identical identifiers.

Figure 6 illustrates the composition of entities pre-
sented in Figs. 4 and 5. This is the composition of a
simple protocol entity and the timer entity. The result-
ing entity has only two access points corresponding to
the interface with the upper (Su) and lower (Sl) levels.
As the access points involved in the synchronization are
no longer required, they have been eliminated.

Now, it should be clear why it was necessary to
replace the standard labeling function with a multila-
bel. The point is that the entity composition, where all
access points are defined using labels, may yield the
resultant object where several symbols correspond to
one transition. Indeed, suppose that the composition of
two entities E1[α, ζ] and E2[β, ξ] with respect to the
points α and β merges transitions t1 and t2. Let idζ = idξ

and σζ(t1) = , σξ(t2) = b. In this case, when t1 and t2 are
merged, two symbols (two elementary communication
operations) and b corresponds to the resultant transi-
tion.

6. EQUIVALENCE OF ENTITIES
The importance and practical usefulness of the

notion of equivalence are commonly recognized in the
theories of concurrent and distributed processes. There
is a wide range of equivalence relations defined for var-
ious contexts, with some relations being stronger than
others (see, for example, the survey in [20]). Most of
these definitions can be expressed in terms of Petri net

∂ α̃ β̃,{ }

γ̃ γ̃
λ̃ γ

α̃ β̃

a

a

theory [29]. In this paper, we use the notion of bisimu-
lation equivalence studied by many authors [14, 21,
27]. First, we give the basic definition of weak bisimu-
lation equivalence of labeled Petri nets [16].

Definition 6.1. Suppose that there are two Petri nets
Σ1 and Σ2 and their labeling functions λ1 and λ2, respec-
tively. These nets are weakly bisimulation equivalent
with respect to the labels if there is a bisimulation rela-
tion R ⊆ [M01〉 × [M02〉 such that

(1) (M01, M02) ∈ R;
(2) if (M1, M2) ∈ R and W ∈ (}(Vis))*, then,

(a) if M1 (W , then ∃ : M2 (W and

(,) ∈ R;

(b) if M2 (W , then ∃ : M1 (W and

(,) ∈ R.

This equivalence is written as (Σ1, λ1) ≈R (Σ2, λ2).
Using this definition as the basic one, we employ its

version from [16] defined in terms of a single step,
which is based on the following fact.

Proposition 6.2. Single-step version of bisimulaton
equivalence. Suppose that there are Petri nets Σ1 and Σ1

with labels λ1 and λ2. The equality (Σ1, λ1) ≈R (Σ2, λ2)
holds if and only if there is a relation R ⊆ [M01〉 × [M02〉
such that

(1) (M01, M02) ∈ R;
(2) if (M1, M2) ∈ R, then

(a) M1 [Θ ⇒ ∃Φ ∈ (}(T))*: M2 [Φ〉 , (,

) ∈ R and σα(Θ) = σβ(Φ);

(b) and vice versa.
Proof is similar to that of Proposition 3.2 in [16].
To put it differently, if a step Θ with the visibility

σα(Θ) = W fires from the marking of one net, it is pos-
sible to fire a sequence Φ of steps with the same visibil-
ity σβ(Φ) = W from the equivalent marking of the other
net. This means that Φ can be represented as ⇒ Θ' ⇒ ,
where σβ(Θ') = W. Thus, the executed sequence con-

〉 λ1
M1' M2' 〉 λ2

M2'

M1' M2'

〉 λ2
M2' M1' 〉 λ1

M1'

M1' M2'

M1' M2' M1'

M2'

EXP
Tm

(i) (ii)

OFFON

T[Tm]

T

OFF

Fig. 5. A timer entity.

316

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

ANISIMOV et al.

tains the only visible step Θ', and the other steps are
invisible.

Based on these definitions, we introduce the equiv-
alence of PN entities in the access points.

Definition 6.3. Suppose that there are two entities
E1 = 〈Σ1, Γ1〉 and E2 = 〈Σ2, Γ2〉 with access points α =
〈idα, λα〉 ∈ Γ1 and β = 〈idβ, λβ〉 ∈ Γ2. These entities are
equivalent in the access points α and β with the relation
R if and only if idα = idβ and (Σ1, λα) ≈R (Σ2, λβ). This

equivalence is denoted as E1 E2.

The complete equivalence, i.e., equivalence in all
access points simultaneously, is defined as follows.

Definition 6.4. Two entities E1 = 〈Σ1, Γ1〉 and E2 =
〈Σ2, Γ2〉 are equivalent if there is a relation R and a one-
to-one mapping ω: Γ1 Γ2 such that, for any α ∈ Γ1,

idα = idω(α) and E1 E2 hold. This equivalence is
denoted as E1 ≈ E2.

In other words, equivalent entities have the same
number of the access points with the same set of names:
Id(E1) = Id(E2). Moreover, they are equivalent in all
access points with identical names and the bisimulation
relations R are identical.

It can be easily shown that equivalence of entities in
the access points with identical identifiers follows from
the equivalence of these entities. In general, the oppo-
site is false; i.e., equivalence does not follow from the
equivalence in every point. Such equivalences may
have different bisimulation relations, whereas the com-
plete equivalence suggests the only relation.

Proposition 6.5. Suppose that there are entities E1 =
〈Σ1, Γ1〉 and E2 = 〈Σ2, Γ2〉 with access points α1, β1 ∈ Γ1

and α2, β2 ∈ Γ2 such that = , = . Let
these entities be equivalent, E1 ≈ E2, with the bisimula-

tion relation R. If Σ1: M1 [Θ1〉 , (Θ1) = Wα,

(Θ1) = Wβ, and (M1, M2) ∈ R, then the net Σ2 con-

≈R
α β

≈R
α ω α()

idα1
idα2

idβ1
idβ2

M1' σα1

σβ1

tains a sequence Θ2 such that Σ2: M2 ⇒ Θ2 ⇒ ,

(,) ∈ R, (Θ2) = , and (Θ2) = .

Proof. It is required to prove that, if a step Θ1 with
the visibility in α1 and in β1 fires in the first
net, then the equivalent sequence in the other net con-
tains the only visible transition Θ2 with the same visi-
bility in the points α2 and β2. Let us prove this. Suppose
that, in the equivalent sequence of the second net, the
steps visible in α2 and β2 are not the same. Without loss
of generality, assume that

where () = Wα, () = Wβ, () = τ, and

() = τ. However, if there is only one bisimulation

relation R, this is impossible, since, e.g., the marking

 has no equivalent marking in the first net. Indeed,

only two cases are possible: (M1,) ∈ R and (,

) ∈ R. However, (M1,) ∉ R, since it is visible
in β1 that Wβ has already fired, whereas in β2 this is not

visible yet. Similarly, (M1,) ∉ R.

It has been known that one of the basic advantages
of the bisimulation equivalence is that it possesses good
algebraic properties. It turns out that the equivalence of
entities inherits these properties.

Theorem 6.6. Congruence of entity equivalence.
Equivalence of PN entities is congruence with respect
to the composition operation; i.e., if E2 ≈ E3, β ∈ Γ2, γ ∈
Γ3, and idβ = idγ, then

(1)

Proof. Let E1 = 〈Σ1, Γ1〉 , E2 = 〈Σ2, Γ2〉 , and E3 = 〈Σ3,
Γ3〉 . Denote F = (E1 α||β E2) and G = (E1 α||γ E3). Let E2 ≈

M2'

M1' M2' σα2
Wα σβ2

Wβ

Wα1
Wβ1

M2 M2
1 Θ2' 〉 M2

2 M2
3 Θ2''〉 M2

4 M2' ,⇒[⇒[⇒

σα2
Θ2' σβ2

Θ2'' σα2
Θ2''

σβ2
Θ2'

M2
2

M2
2 M1'

M2
2 M2

2

M2
2

E1 ||α β E2() E1 ||α γ E3().≈

〈τ , lDat〉

Su

Sl

(i) (ii)

〈uDat, lDat〉
〈uDis, lDis〉E[Su, Sl]

ET
〈uCon, lCon〉

〈τ , lDis〉

〈τ , lAck〉

Fig. 6. An example of entity composition.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

COMPOSITIONAL PETRI NET APPROACH 317

E3 with the relation R1. To prove Eq. (1), it is sufficient
to show that

(2)

This follows from Propositions 6.2 and 3.4. Indeed,
suppose that (M1 + M2, M1 + M3) ∈ R and, for some
synchronization transition t ∈ T1 ⊗ T2, the following
equation holds:

(3)

with σφ(Θ) = W for some φ ∈ Γ2. Let us show that there

is a sequence Φ of steps such that ΣG: M1 + M3 [Φ〉 +

, σφ(Φ) = W. From the step (3) and Proposition

6.2(1), it follows that the step M2 [ν2(Θ)〉 fires in the
net Σ2. From the equivalence E2 ≈ E3, it follows that Σ3
contains the sequence Φ' = ⇒Θ '⇒ with σφ(ν2(Θ')) = W

and σβ(Θ') = . Take M3 such that (M1, M3) ∈ R1. In

line with Proposition 6.2, Σ3: M3 ⇒ [Θ〉 ⇒ , σγ(Θ3) =
σβ(Θ3), and σφ(Θ3) = W. Proposition 6.2(1) guarantees
that the net G contains t ' = Θ + Θ3 with σφ(t ') = W. This
means that

(4)

with σφ(t ') = W.
For transitions that are not contained in the set of the

synchronization transitions, the proof is obvious. This
result can be easily extended to the transition step.

This result makes it possible to apply the modular
approach to the development and verification of com-
plex communicating systems. In particular, one can
replace some unit of the system with an equivalent one
without changing the overall behavior of the system.

Note that the entity equivalence based on the step
semantics is the weakest equivalence; it is congruent
with respect to the composition operation. It is easy to
verify that the equivalence based on the interleaving
semantics of Petri nets is not congruent.

7. PROPERTIES OF ENTITY COMPOSITION

In order to use the entity composition in practice,
this operation must be commutative and associative.

Proposition 7.1. Commutativity of entity composi-
tion. Suppose that there are entities E and F and their
access points α ∈ ΓE and β ∈ ΓF. Then (E α||β F) =
(Fβ||α E).

Proof immediately follows from commutativity of
the union operation (for sets and multisets) and Defini-
tion 5.2.

In addition, it turns out that the composition opera-
tion is associative.

R M1 M2+ M1 M3+,() | M2 M3,() R1,∈{=

M1 M2 MF0〉[∈+ M1 M3 MG0〉 } .[∈+,

ΣF: M1 M2 [t〉 M1' M2'+ +

M1'

M3'

M2'

W

M3'

ΣG: M1 M3 t '〉 M1' M3'+[+

Theorem 7.2. Associativity of entity composition.
Suppose that E1, E2, and E3 are entities; α ∈ Γ1, β, ζ ∈
Γ2, idα ∉ Id(E3), and idξ ∉ Id(E1). Then,

Proof. Let F = ((E1 α||β E2) ζ||ξ E3) and G = (E1 α||β
(E2 ζ||ξ E3)). Obviously, it is sufficient to verify that the
sets of synchronization transitions of the nets ΣF and ΣG

are equal, i.e., (T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3). For this
purpose, we employ the idea used in the proof of The-
orem 3.2. Let us show that both sets are equal to T1 ⊗
T2 ⊗ T3, which is defined as follows. An auxiliary net

 = 〈S12 ∪ S23, T1 ∪ T2 ∪ T3, •(), ()•, M0〉 is con-
structed, where S12 = ∆12 = ∆α ∪ ∆β, S23 = ∆ζ ∪ ∆ξ,
M0 = 0,

The set of minimal T-invariants for is T1 ⊗ T2 ⊗
T3. Consider how the set (T1 ⊗ T2) ⊗ T3 is computed.

First, the net is used to construct the set T1 ⊗ T2 =

{x1, …, xp,}, where xi = + are

minimal. Next, the net is constructed from the
transitions T1 ⊗ T2 and T3 assuming that

It is well known that algorithms of searching for T-
invariants (e.g. [2]) consist in stepwise transformation
of the incidence matrix by means of linear composition
of other rows in order to fill columns with zeros. Every
such step can be interpreted as a reduction of the Petri
net that isolates the place corresponding to the column
being filled with zeros (see the reduction rule R1 in
[13]). Let the algorithm for finding T-invariants in the

net first zeroes the columns that correspond to the
places S12. Then, rows of the resultant incidence matrix
correspond to transitions from T1 ⊗ T2 and T3. Note that

this matrix corresponds to the net . Hence, further

E1 ||α β E2() ||ζ ξ E3() E1 ||α β E2 ||ζ ξ E3()().=

Σ̃123

t()•

σα
+ t()  ∆ 12, if t T1;∈

σβ
+ t()  ∆ 12 σζ

+ t()  ∆ 23, if t+ T2;∈

σξ
+ t()  ∆ 23, if t T3;∈

=

t()•

σα
+ t()  ∆ 12, if t T1;∈

σβ
+ t()  ∆ 12 σζ

+ t()  ∆ 23, if t+ T2;∈

σξ
+ t()  ∆ 23, if t T3.∈

=

Σ̃123

Σ̃12

nttt T1∈∑ nttt T2∈∑
Σ̃12 3,

xi()• σζ ntt ntt
t T2∈
∑+

t T1∈
∑ 

 
 

=

= σζ ntt
t T2∈
∑ 

 
 

ntσζ t().
t T2∈
∑=

Σ̃123

Σ̃123

318

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

ANISIMOV et al.

operation of the algorithm will lead to the set of invari-

ants that simultaneously correspond to the nets

and . Similarly, it can be shown that T1 ⊗ (T2 ⊗ T3) =
T1 ⊗ T2 ⊗ T3. Thus, the equality T1 ⊗ (T2 ⊗ T3) = (T1 ⊗
T2) ⊗ T3 holds.

This result allows us to write (E1 α||β E2 ζ||ξ E3) and
to compose the nets without taking care of the order of
the operations.

8. CONCLUSION

In this paper, the notions of the Petri net entity and
the entity composition have been introduced. The Petri
net entity is an extension to the labeled Petri net;
instead of a single label, it uses several labels called
access points of the entity. This extension allows map-
ping of a single physical event (transition firing) to sev-
eral logical events related to communication with other
objects. In its turn, this has required the extension of the
notion of the label to the multilabel, which maps a sin-
gle transition to a multiset of symbols.

The composition operation makes it possible to sup-
port the compositional style of system development
and verification. Indeed, it makes possible to develop
individual parts of the system independently and, then,
to compose them. Moreover, since the composition is
congruent, it is possible to replace subsystems by
equivalent ones without changing the overall behavior
of the system. This can be helpful when using the step-
wise refinement for the system design. In papers [1, 8],
it is shown how this principle can be used for hierarchi-
cal composition of protocols.

We believe that the possibility to schematically rep-
resent the structure of Petri net entities is of practical
significance. Indeed, the top-down development
implies that the developer first represents the system
schematically as a structure of entities, which is consis-
tent with the commonly accepted paradigm of design in
terms of units and connections. Units can be nested at
any structural level. At the next stage, the internal struc-
ture of the blocks from the deepest level is determined
in terms of Petri nets. Note that this design is formal at
all stages. In papers [8–10], some results on the appli-
cation of this approach to the development of actual
concurrent and distributed systems are presented.

Let us outline the problems that should be solved in
order to make possible the application of the composi-
tional Petri nets to solving practical problems.

(a) A more elaborated set of operations over Petri
nets is necessary for the construction of internal struc-
ture of entities. This set may contain sequential compo-
sitions, iterations, selections, and the like. In this
respect, it may be reasonable to extend the notion of the
access point to Petri net places.

(b) To further improve practical characteristics of
the formalism, it should be extended to high-level Petri
nets; its relations to concurrent programming and spec-

Σ̃123

Σ̃12 3,

ification languages must be established; and appropri-
ate automation tools are to be developed.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Science

of the Russian Federation, project no. 0201.01.225.

REFERENCES
1. Anisimov, N.A., Hierarchical Composition of Protocols,

Avtom. Vychisl. Tekh., 1990, no. 1, pp. 3–10.
2. Achasova, S.M. and Bandman, O.L., Korrektnost’ par-

allel’nykh vychislitel’nykh protsessov (Correctness of
Parallel Computational Processes), Novosibirsk: Nauka,
1990.

3. Kotov, V.E., Seti Petri (Petri Nets), Moscow: Nauka,
1984.

4. Protokoly informatsionno-vychislitel’nykh setei. Sprav-
ochnik (Protocols of Information Computational Net-
works. Handbook), Mizina, I.A. and Kuleshova, A.P.,
Eds., Moscow: Radio i Svyaz’, 1990.

5. Hoare, C., Communicating Sequential Processes, Engle-
wood Cliffs: Prentice-Hall, 1985. Translated under the
title Vzaimodeistvuyushchie posledovatel’nye protsessy,
Moscow: Mir, 1989.

6. Alaiwan, H. and Toudic, J.M., Recherche de Semiflots, des
Verrous et Trappes dans les Reseaux de Petri, Technique Et
Sciences Informatiques, 1985, vol. 4, pp. 103–112.

7. Anisimov, N.A., A Petri Net Entity as a Formal Model
for LOTOS, a Specification Language for Distributes
and Concurrent Systems, Parallel Computing Technolo-
gies, Mirenkov, N.N., Ed., Singapore: World Sci., 1991,
pp. 440–450.

8. Anisimov, N.A. and Koutny, M., On Compositionality
and Petri Nets in Protocol Engineering, Protocol Speci-
fication, Testing and Verification, XV, Dembinski, P. and
Sredniawa, M., Eds., Chapman & Hall, 1996, pp. 71–86.

9. Anisimov, N.A., Kovalenko, A.A., Tarasov, G.V., Inzart-
sev, A.V., and Sherbatyuk, A.Ph., A Graphical Environ-
ment for AUV Mission Programming and Verification,
Proc. of the 10th Int. Symp. on Unmanned Untethered
Submersible Technology, New Hermpshire, USA, 1997,
pp. 394–405.

10. Anisimov, N.A., Kovalenko, A.A., Postupalski, P.A., and
Vuong, S.T., Application of Compositional Petri Nets
and PN3—Tool to the Specification of Distributed Mul-
timedia Objects, Advances in Distributed Multimedia
Systems, Chang, S.K. et al., Eds., Singapore: World Sci.,
1999, pp. 99–116.

11. Barbeau, M. and Bochmann, G.V., A Subset of Lotos
with Computational Power of Place/Transition Nets,
Lecture Notes in Computer Science, 1993, vol. 691,
pp. 49–68.

12. Baumgarten, B., Ochsenschläger, P., and Prinoth, R.,
Building Blocks for Distributed System Design, Proto-
col Specification, Testing, and Verification, Diaz, M., Ed.
(Proc. of the V IFIP WG 6.1 Conf.), North-Holland:
Elsevier, 1986, pp. 19–38.

13. Berthelot, G., Roucairol, G., and Valk, R., Reduction of
Nets and Parallel Programs, Lecture Notes in Computer
Science, 1980, vol. 84, pp. 277–290.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 27 No. 6 2001

COMPOSITIONAL PETRI NET APPROACH 319

14. Bergstra, J.A. and Klop, J.W., Algebra of Communicat-
ing Processes, in Math. on Comput. Sci. (Proc. CWI
Symp.), 1986, pp. 89–138.

15. Bernadinello, L. and De Cindio, F., A Survey of Basic
Net Models and Modular Classes, Lecture Notes in Com-
puter Sciences, Springer, 1992, vol. 609, pp. 304–351.

16. Best, E., Devillers, R., Kiehn, A., and Pomello, L., Con-
current Bisimulations in Petri Nets, Acta Informatica,
1991, vol. 28, pp. 231–261.

17. Best, E., Devillers, R., and Hall, J.G., The Box Calculus:
A New Causal Algebra with Miltilabel Communication,
Lecture Notes in Computer Sciences, Springer, 1992,
vol. 609, pp. 21–69.

18. Bolognesi, T. and Brinksma, E., Introduction to the ISO
Specification Language LOTOS, Comput. Networks
ISDN Systems, 1987, vol. 14, pp. 25–89.

19. Cherkasova, L.A. and Kotov, V.E., Structured Nets, Lec-
ture Notes in Computer Sciences, Springer, 1981,
vol. 118, pp. 242–251.

20. Van Glabbeek, R.J., The Linear Time—Branching Time
Spectrum, Lecture Notes in Computer Sciences, Berlin:
Springer, 1990, vol. 458, pp. 278–297.

21. Van Glabbeek, R.J. and Vaandrager, F.W., Petri Net
Models for Algebraic Theories of Concurrency, Lecture
Notes in Computer Sciences, Springer, 1987, vol. 259,
pp. 224–242.

22. Goltz, U., On Representing CCS Programs by Finite
Petri Nets, Lecture Notes in Computer Sciences,
Springer, 1988, vol. 324, pp. 339–350.

23. Hopkins, R., Hall, J., and Botti, O., A Basic-Net Algebra
for Programs Semantics and Application to OCCAM,
Lecture Notes in Computer Scences, Springer, 1992,
vol. 609, pp. 179–214.

24. High-Level Petri Nets. Theory and Application, Jensen,
K. and Rozenberg, G., Eds., Springer, 1991.

25. Kotov, V.E., An Algebra for Parallelism Based on Petri
Nets, Lecture Notes in Computer Sciences, Springer,
1978, vol. 64, pp. 39–55.

26. Mauw, S. and Veltink, G.J., A Process Specification For-
malism, Fundamenta Informaticae XIII, 1990, pp. 85–139.

27. Milner, R., A Calculus for Communication Systems,
Lecture Notes in Computer Sceinces, Springer, 1980,
vol. 92.

28. Olderog, E.-R., Operational Petri Net Semantics for
CCSP, Lecture Notes in Computer Sciences, Springer,
1984, vol. 266.

29. Pomello, L., Rozenberg, G., and Simone, C., A Survey of
Equivalence Notions for Net Based Systems, Lecture
Notes in Computer Sciences, Springer, 1992, vol. 609.

30. Lecture Notes on Petri Nets. Parts I and II, Lecture Notes
in Computer Sciences, Reising, W. and Rozenberg, G.,
Eds., Springer, 1998, vols. 1491–1492.

31. Advances in Petri Nets 1992, Lecture Notes in Computer
Sciences, Rozenberg, G., Ed., Springer, 1992, vol. 609.

32. Taubner, D., Finite Representation of CCS and TCSP
Programs by Automata and Petri Nets, Lecture Notes in
Computer Sciences, Springer, 1989, vol. 369.

33. Valette, R., Analysis of Petri Nets by Stepwise Refine-
ments. J. Comput. System Sci., 1979, vol. 18, pp. 35–46.

34. Vogler, W., Failures Semantics and Deadlocking of
Modular Petri Nets, Acta Informatica, 1989, vol. 26,
pp. 333–348.

35. Voss, K., System Specification with Labelled Nets and
the Notion of Interface Equivalence, Arbeitspapiere Der
GMD, 1986, vol. 221.

