
COMPREHENSIVE XML FOR CONTACT CENTER

Nikolay Anisimov, Brian Galvin, Herbert Ristock
Genesys Telecommunication Laboratories (an Alcatel company)

2001 Junipero Serra Blvd, Daly City, CA 94521, USA

E-Mail: {anisimov,bgalvin,herbertr}@genesyslab.com

ABSTRACT

W3C languages, VoiceXML and CCXML all play an important role in contact centers (CC) by simplifying the creation

of CC applications. However, they cover only a subset of contact center functions, such as simple call control and

interactive voice response (IVR) with automatic speech recognition. We discuss ways to complement VoiceXML and

CCXML in order to cover all necessary contact center functions required to script end-to-end interactions in a consistent

and seamless way. For this purpose we introduce an XML forms-based framework called XContact comprising the CC

platform and applications, multi-script and multi-browsing, and interaction data processing.

KEYWORDS

Call center, contact center application, VoiceXML, Call Control XML, organizational structure, routing.

1. INTRODUCTION

Creating business applications in contemporary Contact Centers (CC) [3] is a very complex task. Indeed,
typical CC applications [1] comprise Interactive Voice Response (IVR) scripts, routing strategies, call control,
agent scripting, reporting, etc. Each of these functions has their dedicated tools and scripting languages and a
CC application designer is required to be proficient in all of them. More unfortunately, in most companies
there are pools of experts in each of several quite distinct disciplines, making it extremely difficult to design
end-to-end interaction management applications.

The heterogeneous structure of CC applications is a challenge also because many of the applications, such
as routing strategies, are also strongly platform dependent. Since most of the leading contact center
applications remain proprietary, it is quite common that applications developed for a specific contact center
product cannot be easily transferred to another one.

A proven way of achieving application uniformity, platform independence, and simplification of the task of
creating business applications is to employ XML-based standards and related technologies. XML is
increasingly used as a basis for building applications in different vertical businesses. Good examples of XML-
based standards for voice processing are the VoiceXML [9] and Call Control XML (CCXML) [8] protocols
developed within W3C. They enable representation of any voice application as an XML document, and using
VoiceXML and CCXML it is already possible to build simple CC applications involving only IVR (including
automatic speech recognition capabilities) processing and simple call control and to represent them as a single
XML document. The main advantages are obvious: uniformity, platform independence, and leveraging web
technologies.

However, VoiceXML and CCXML do not address other important aspects of CC applications such as
interaction workflow/service chain management (the process management task specialized on customer
interaction management), interaction routing, scripting agent activities, reporting on agent performance and
traffic management, using customer profiles, conducting outbound campaigns, and interactions that are
conducted in media other than voice.

VoiceXML and CCXML are, in fact, good examples of the strength and the limitations of the common
approach to standards. This approach emphasizes bottom-up standardization, with each standard addressing a
limited problem space; one typically solves the problem at hand and closely related problems when developing
a new standard. The alternative top-down approach would be to design a purpose-built standard that could
accommodate all of the elements needed for the entire larger problem domain (in this case, end-to-end

ISBN: 972-8924-19-4 © 2006 IADIS

294

interaction management in a media-independent way). Such top-down standardization seems attractive but is
probably unwieldy, and any failure to anticipate every possible contingency leads inevitably to serious flaws
that make such standards likely to fail (in the sense that they do not achieve widespread acceptance and
multiple implementations).

We introduce some ways of extending the VoiceXML and CCXML approach in order to provide coverage
for additional important contact center functionality. We propose a methodology that is open to incremental
extensions and that presents basic interaction management concepts such as platform and application, multi-
script and multi-browsing, and interaction data processing without attempting a comprehensive top-down
standard. The proposed methodology consists of a general XML-based interaction scripting framework called
XContact, as well as a protocol for expressing the local interaction platform specifics (configuration,
rules/state machine and current state) called XPlatform.

The focus is on main concepts and principles rather specific XML languages. The XML notation used in
examples is self explanatory and serves for illustrative purposes only.

2. CONTACT CENTER ENVIRONMENT

Fig. 1 shows a typical structure of a contact center. The computing and telephony domains are connected
through Computer Telephony Integration (CTI) technology [7] via CTI-Link and CTI-Server. The computing
domain usually comprises several application services, each being responsible for particular functions of
contact center operation, e.g. a routing server to find the most appropriate resource for inbound calls or an
outbound server for outbound notification and generation of outbound calls to customers. The contact center
database captures all information related to customers and customer interactions. Typical call processing is
sometimes fully automated (self service), but often also requires providing assistance to the customer by
Customer Service Representatives (CSR). Each CSR is represented in the contact center environment with a
desktop and a phone connected to the switch.

Figure 1. Contact Center environment

Here is a typical scenario of inbound call processing: The inbound call is transferred to an IVR for
collecting initial information. Sometimes the customer is fully served from within the application provided by
the IVR; in other cases the IVR assists in “call steering” by asking the customer to specify what their service
needs are. Then the call is transferred to a Router whose job is to select the most appropriate available CSR.
The call is transferred to this CSR’s phone. At the same time all collected information – potentially together
with customer’s historical information - is submitted to the CSR’s desktop, and the CSR starts conversation,
often guided during the conversation by prompts (displayed on the CSR’s computer screen; this is called agent
scripting).

IADIS International Conference WWW/Internet 2006

295

As discussed above, currently only two components of the contact center application can be expressed in
terms of standardized XML, i.e. the other functions require proprietary script languages and tools.

3. XML-BASED CONTACT CENTER FRAMEWORK

3.1 XContact and XPlatform

VoiceXML and CCXML were introduced to cover IVR and telephony call control functionality. Additional
XML-based protocols are desirable to cover call routing, generation of outbound calls, agent scripting,
multimedia interaction control, etc. We will denote the set of all of these XML languages (old and new) as
XContact. Applications written in these languages will be called as XML scripts.

XContact contains also orchestration capabilities for building and executing complex applications
composed of individual XML scripts. These orchestration facilities should include mechanisms for invocation
of XML scripts, exchanging data between scripts, and other synchronization mechanisms, see Fig. 2. The
XContact architecture assumes that platform-dependent components are clearly separated from XContact and
its languages.

The term XPlatform is used to denote all platform-dependent components and data indicating that it shall
also be extendable and expressed in XML-based notation. The actual XPlatform specification will usually vary
across different contact center instances, while XContact and comprising languages do not depend on the
actual platform. However, during execution an application written in XContact has to be aware of the
underlining platform and its specifics.

In summary XContact can be seen as a set of concepts, models and XML-based languages for the creation
of complete contact center applications.

Figure 2. XContact and XPlatform

3.2 Concept of Platform in VoiceXML/CCXML

One of the main advantages of VoiceXML and CCXML is application platform-independence. Voice
applications written in VoiceXML/CCXML could run on any VoiceXML/CCXML platform because
VoiceXML has been created in a similar way as HTML, and neither the VoiceXML language itself nor
VoiceXML applications have any assumption about the platform structure.

However, with CCXML the situation is more complex. CCXML was designed to provide telephony call
control as a complement to VoiceXML. CCXML uses a relatively simple call model that represents an
abstraction of call models such as CSTA [6], ECTF C.001 [2], and JAIN [4]. It is assumed that CCXML
applications could run on platforms with different call models. However, we cannot say that CCXML is fully
platform-independent. Indeed, the CCXML call model specifies telephony events an application can receive
from the platform. Some parameters of the events are platform dependent. For example, parameters such as
ANI (Automatic Number Identification) and DNIS (Dialed Number Information Service), that are very
important for contact centers applications, depend essentially on the underlining protocol.

ISBN: 972-8924-19-4 © 2006 IADIS

296

One way to avoid such platform dependencies in CCXML is to explicitly specify the used call model as
part of the platform. This specification may be XML-based and contain the specification of at least all events
with parameters. It also may contain a specification of requests and call model behavior in form of a state
machine. The designer of a CCXML application shall be aware of the given call model and shall design the
application based on its specification. Such approach allows one to not be limited by a specific call model but
to use the most convenient and complete one that is appropriate for the particular platform elements. For
instance, one can use the Genesys call model for voice applications intended to be executed on the Genesys
platform - of course the specification of the Genesys call model has to be available to the application
developer.

For end-to-end contact center applications the platform relationship is even more complex. Beside the
telephony call model a contact center usually contains many other components that can hardly be unified.
Examples are the organizational structure of CC personnel taken into account for finding the most appropriate
CSR, interaction models for other media like e-mail and chat, etc.

3.3 Platform structure

A contact center Platform may contain different parts responsible for operation of the contact center. Let us
consider some important parts of the platform.

3.3.1 Interaction platforms

The important parts of an “interaction platform” are components that are responsible for the management of
“physical” interactions. There may be different platforms that are related to different media and different
underlining network protocols. The interaction platform description typically includes the following parts:

The interaction platform’s configuration including description of configured objects and resources like
available communication ports, directory numbers, devices, etc.

The current state of the interaction platform including all active interactions existing within the
platform. We will represent a collection of active interactions as an XML document containing a list
of interaction elements with parameters like call legs or parties, their states, attached data (data that is
tightly coupled to the particular interaction, such as customer account identification), and so forth (see
Example below).

A description of the interaction model that may include the set of events that may be issued by the
interaction platform, the set of requests and associated parameters that can be used to control
interaction processing, and the state machine that defines the behavior of the interaction platform. A
designer of an XContact application should be aware of this model and his application must be
compliant to the model.

3.3.2 Organizational structure

The most important and expensive part of every real-world contact center is its workforce that comprises
CSRs, managers, administrators, etc. The organization of a workforce in workflow systems is usually called
organizational structure [5]. Each contact center has its own organizational structure that may be formed of
branches, departments, groups, managers and CSRs. The designer of a CC application must be aware of the
organizational structure in order to organize resource management in his application in an appropriate way.

3.3.3 System data

The CC platform may maintain and expose to its applications a wide range of system data. An example is a
time service providing applications with information about current time and day. Another example of system
data is current values of service objectives of applications like average waiting time, abandonment rate, CSR
occupancy, etc. This information can be used, for instance, for making routing decisions.

4. EXAMPLE: TOY CONTACT CENTER PLATFORM

For illustration purpose let’s introduce an XML-based specification of a very simplified Toy Contact Center
Platform (TCCP).

IADIS International Conference WWW/Internet 2006

297

4.1 General platform structure

TCCP contains two main elements <voiceConfiguration> and <organizationalStructure> that will be described
in more detail in the following sections.
<CCPlatform name=”ToyContactCenter”>

 <voiceConfiguration name=””>

 </voiceConfiguration>

 <organizationalStructure>

 </organizationalStructure>

</CCPlatform>

4.2 Voice Configuration platform

The TCCP voice configuration platform is described by the following XML document.
<voiceConfiguration name=”ToyVoiceConfig”>

 <switch name=”SW1”>

 <directoryNumbers>

 <dn num=”1120” type=”regular”/>

 <dn num=”1121” type=”regular”/>

 <dn num=”1122” type=”regular”/>

 <dn num=”2239” type=”routingPoint”/>

 </directoryNumbers >

 <calls>

 <call callID=”0238AB82” type=”voice”>

 <leg type=”external”/>

 <leg type=”internal” dn=”2239”/>

 <dnis value=”8001234567”/>

 </call>

 </calls>

 </switch>

</voiceConfiguration>

The platform consists of two parts: configuration of directory number (DN) objects and description of all
current interactions (calls). In the given example there are four configured DNs: 1120, 1121, 1122, and 2239.
First three of them are regular DNs that represent CSRs’ phones. The fourth DN has a type routing point that is
associated with routing strategy.

At the given time the platform contains only one active call specified by the element <call>. The call
comprises two legs, one is associated with a customer and the other one with a routing point DN with a
corresponding routing strategy. The call’s DNIS number is contained in the <dnis> element.

4.3 Organizational Structure

TCCP has a very simple organizational structure consisting only of CSRs:
<organizationalStructure>

 <CSR Name=”Mike First” status=”Ready”>

 <skill name=”CustomerService” level=”5”/>

 <dn num=”1120”/>

 <occupancy value=”0.96”/>

 </CSR>

 <CSR Name=”John Second” status=”Ready”>

 <skill name=”CatalogSale” level=”5”/>

 <dn num=”1121”/>

 <occupancy value=”0.90”/>

 </CSR>

 <CSR Name=”Petr Wise” status=”Busy”>

 <skill name=” CustomerService” level=”2”/>

 <skill name=”CatalogSale” level=”5”/>

 <dn num=”1122”/>

 <occupancy value=”0.83”/>

 </CSR>

</organizationalStructure>

ISBN: 972-8924-19-4 © 2006 IADIS

298

At the given time the TCCP has three CSRs. Each CSR has skills represented by the element <skill>. The
first CSR, Mike First, has a skill related to customer service activity. The second CSR, John Second, has a skill
related to catalogue sale activity. The third CSR, Petr Wise, is cross-trained and has both skills. Each CSR has
a status representing his availability, and its value is given by the attribute “status”. Note that the two first
CSRs are in state “Ready” and can accept new calls. The third CSR is in state “Busy” and is already engaged
in a call. Each CSR is associated with a directory number (element <dn>) representing his telephone.
Moreover, each CSR has a statistic describing his occupancy, i.e. a ratio of busy time to overall work time
within some time interval.

Note that attributes such as occupancy and status are highly dynamic and can be extracted from a separate
server.

More generally, all data containing in XPlatform can be instantiated in different servers of the CC. This
applies both to Organizational Structure and also to Voice Configuration, where e.g. <calls> are very dynamic.

5. CONCLUSION

Within this paper we introduced main concepts that we believe will be important for a comprehensive and
consistent scripting of all contact center functions. In particular, the notion of a generalized XPlatform has
been introduced representing the structure, capabilities and current state of the underlying real systems which
are needed to handle interactions, and it is complemented by a standardized XContact specification that allows
for end-to-end scripting of interaction management rules. A key element of the XContact approach is to allow
usage of existing “bottom-up” protocols such as VoiceXML, CCXML, XMPP and many others within an
orchestrated application framework that also provides missing elements such as routing strategy specification,
outbound campaign rules specification, and so forth. Our future plans include the incorporation of applicable
existing XML specifications and the development of XML languages for specific areas of contact centers that
do not currently have coverage, as well as the more complete articulation of the XContact and XPlatform
protocols.

REFERENCES

[1] Anisimov N. et al. 1999. Formal Model, Language and Tool for Design Agent's Scenarios in Call Center Systems,
Proceedings of the 32nd IEEE Hawaii International Conference on System Sciences, Hawaii, USA.

[2] Call Control Model. Enterprise Computer Telephony Forum (ECTF) C.001. 1997.

[3] Gans N., Koole G., Mandelbaum A. 2003. Telephone Call Centers: Tutorial, Review and Research Prospects,
Manufacturing and Service Operations Management, vol.5, no.2, pp. 79–141.

[4] JAIN Call Control, JSR 000021, 2001.

[5] M. zur Muehlen. 2004. Organizational Management in Workflow Applications – Issues and Perspectives.
Information Technology and Management Journal. Kluwer Academic Publishers, Vol. 5, No. 3, pp.271-291.

[6] Services for Computer Supported Telecommunications Applications (CSTA) Phase III. Standard ECMA-269. 5th
Edition – December 2002.

[7] Sheng-Lin Chou, Yi-Bing Lin, 2000. Computer Telephony Integration and Its Applications, In IEEE
Communications Surveys & Tutorials. vol. 3, no.1, pp.2-11.

[8] Voice Browser Call Control: CCXML Version 1.0. W3C Working Draft 29 June 2005. See
http://www.w3.org/voice/

[9] Voice Extensible Markup Language (VoiceXML) Version 2.0. W3C Recommendation 16 March 2004. See
http://www.w3.org/voice/

IADIS International Conference WWW/Internet 2006

299

