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Abstract. The paper addresses the formal model for formal description techniques of com-
munication protocols based on Petri nets. As a starting point we take an algebra of regular
Petri nets (RPN) proposed by V. Kotov. This algebra is generalized in order to enhance an
adequacy of protocol representation. A generalization of RPN called regular macronets
(RMN) is described. We aso define a set of operations on macronets which are generaliza-
tions of those in RPN. In particular, in order to describe such constructions as resel, restart,
disconnection, efc., we introduce a new net operation called disruption. The notion of
bisimulation equivalence is reformulated for RMNs. It is shown that this equivalence is a
congruence with respect to all net operations. Finally, we give an informal comparison of our
approach with related ones. We illustrate an application of the introduced formalism with
the aid of the ISO transport protocol.

Anreipa perynsprsix maxpoceTeli 115 GOPMATLHONO ONWCAHER npoToKoaoe cereid IBM
Hukonait A. Auscumon

Pestome, Pabota noceauiesa paspaGotxe GpopMansHON MOJIETH /1718 CPEICTR thopmaisHOro
ONMHCAHHA MPOTOKONOB HA ocHoBe cetedl Tletpu. B xavectme ornpasHoil Toukw Bepetes
anrebpa peryaspusix cetedl IMetpu, seenennas B. KoroswiM. Ona obobuiaetcs ¢ neabio
NOBBIMICHHA 3/ICKBATHOCTH NPH ONHCAHHK NPOTOKON0B. BRoauTea obobienne peryaapusix
CCTEH, HA3IBAHHOE MaKpoceTAMH. Ompene/sioTcs ONEPAUMM  HAN  MAKPOCETAMM,
ARNAIOMIKECE 000DILEHHEM COOTRETCTRYIOLIMX onepannil B anrebpe peryaapusix ceteii. Ha
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KOTOPOE SBJIAETCA KOHIPYIHTHOCTHIO MO OTHOWIEHHIO K BBEACHHBIM onepaunsm. Jaerca
HepOPMATTbHOE CPABHEHME C AHATOTHYHBIMH MomXoAamu. [IpHMeHeHHe BBEACHHOTO am-
MapaTa HTIOCTPHPYETCA Ha NMpHMEPEe OMMCAHWA TPAHCNOPTHOro mpotoxona 1SO.
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1 INTRODUCTION

A design of computer network software is a very complex process which involves a
sequence of stages. Most of them deal with communication protocols, namely with theif
design, formal specification, verification, performance prediction, implementation, etc.
In order to provide the correctness of designed protocols each stage should be supported
by appropriate formal techniques. One of them called Formal Description Technique
(FDT) plays an important role in this process. Roughly speaking, each FDT consists of
a formal model and specification language. Moreover, FDTs usually give rise to various
computer aided tools which are intended for supporting a protocol design process.

At present the best-known FDTs are Estelle [17] and LOTOS [18] developed within
the ISO. As formal models they use an extended state transition model and Milner’s one,
respectively. Despite the fact that Petri nets are widely used for the specification and
verification of communication protocols [11], they are not known as a formal model of
any FDT. At the same time, Petri nets enable to describe concurrency and asynchrony
in a very natural and explicit way. Moreover, the Petri net theory possesses a rich scope
of models and techniques [8, 27] that can be used successfuly in a protocol design process.
Therefore it seems to be useful to cast Petri nets into FDT.

Our long-term goal is to develop such a FDT with corresponding computer-aided tool
which would show such main features as wide use of Petri net theory results; com-
positional approach to protocol design. the use of standard specification languages such
as Estelle and LOTOS, visualization of all design procedures by exploiting graphical
facilities of Petri nets. The aim of this paper is to develop a mathematical basis of this
approach. In particular, we offer an algebra of regular macronets being an extension of
the algebra of regular Petri nets introduced by V. E. Kotov [20]. This algebra is intended
for the description of protocol structures. The use of an algebraic approach itself enables
us to design and specify protocols in a compositional manner. On the other hand, the net
approach provides us with an explicit and natural notion of concurrency, graphical
facilities, various methods of analysis. In this paper the main emphasis is on a formal
basis of the FDT mentioned, its adequacy to protocols. Other aspects of the approach
discussed concerning verification methods, proper specification languages, some specific
problems of a protocol theory can be found in [3—35].

2 COMMUNICATION PROTOCOLS AND AN ALGEBRAIC APPROACH

There are two main sources of difficulties in a protocol specification by means of Petri
nets. The first one is a difficulty in a formal representation of operations having para-
meters and variables. This problem is usually overcome by using models of High-level
Petri nets (e.g. Predicate Transition nets [12] or Coloured nets [19]). The second difficulty
is the complexity of control structures of real-world protocols. They are usually defined
as a set of more simple components such as phases, procedures, subprotocols which are
united into the entire protocol in a special way. For the formal supporting of this
approach we need some protocol composition rules which must correspond to intuitive
methods of protocol design, produce clear and strict specifications, guarantee correct-
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ness. A very natural way to achieve this is to use an algebraic approach to the design and
specification of communication protocols.

At present there are a number of works concerning the combining of algebraic and
net approaches [26]. As a starting point we take an algebra of regular Petri nets [20]
proposed by Kotov. This algebra contains a definition of atomic nets, each atomic net
consisting of a single transition together with head and tail places. Some net operations
have been introduced, including a join, exclusion, parallel composition and iteration. In
general, all these operations are well suited for formalizing practical methods of protocol
design and specification. Indeed, they enable to build sequential, mutually exclusive,
parallel and cyclic constructions.

On the other hand, the algebra of regular Petri nets has some considerable disadvan-
tages. First, this algebra does not enable us to use multiple transitions, i.e. several
transitions with the same label. In addition, it is impossible to use so called “silent”
transitions to represent internal actions. Second, the combining of iteration and ex-
clusion operations can result in constructions which do not agree with our intuition. For
example, the exclusion of two nets in Fig. 1 results in an unexpected net. That is, the firing
of the transition labelled a does not exclude the firing of b and vice versa. Third, the
algebra of regular Petri nets has not a convenient notion of equivalence. For this reason
the algebra does not possess a sufficient analytical power. And, finally, the algebra is
incapable of representing such widely used protocol constructions as restart, disconnec-
tion, reset, etc., i.e. those where one procedure can disrupt the execution of another one.

®

O

Fig. |

The paper [2] is a first attempt to extend Kotov's algebra but it concerns only the last
disadvantage. The present paper contains a more substantial extension that removes all
the above restrictions.

3 BASIC DEFINITIONS AND NOTATIONS

In this section we give some definitions of nets we need and some auxiliary net
operations, It is recognized (e.g. [25]) that the main drawback of net operations is that
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their formal definitions are somewhat cumbersome while their intuitive meaning is quite
clear and obvious. One way to simplify the definitions is to use special definitions of nets,
see, for example. that in [15, 34] which simplifies a definition of parallel composition. In
this paper we use not one definition of nets but a set of equivalent ones, each of them
being used at a suitable moment.

Let A be a set. Then A* will denote the set of all possible words composed from
elements of 4. A" is equal to A* without an empty word. P(A) will denote the power set
of 4. A concatenation of words v, we A* will be simply written as vw.

Let B be a set that will be called basic alphabet.

Definition 3.1. A net in P-form is a tuple NET" = (P, T where

(1) P < B" a finite set of places;
(2) T= P(P) x B" x P(P) a finite set of transitions.

For t = (S, v, S;>e T we write ®1 = §,, {* = §,, = v. Moreover, for each pe P we
define ®p = {rlpe®}, p* = {lpe®r}. p = p.

Thus places and transitions are defined with the aid of the same alphabet B that is
necessary only for technical reasons, which will become clear later. In other respects this
definition is similar to those used in [15, 34].

Definition 3.2. A net in T-form is a tuple NET” = (P, T where

(1) T= B™ a finite set of transitions;
(2) P= P(T) x B* x P(T) a finite set of places.

Similarly, for each p = ¢5,, v, S, € P we write *p = §,, p* = S, p = v. Moreover,
*r = {pltep®}, 1* = {plte®p}, I = t for each te T.

The two definitions are equivalent. Indeed, we can translate NET" = (P, T;) into
NETT=¢(P. L5 as follows: T, :=T;, P.:={{*p, p, p*>lpe P, ). The inverse trans-
lation is absolutely symmetrical. Thus we are free in using one of these definitions.
Moreover, we will not indicate the form of nets at all if this does not result in a confusion.

Definition 3.3. Let X be an alphabet and r¢ X a distinguishable symbol. We write Xr= Ju
{r}. A labelled net is a tuple LNET = {NET, o) where NET isanetand o: T— Zrisa
labelling function.

Now we introduce a more compact notation of nets called structured nets.
Definition 3.4. A structured net (s-net, for short) is a tuple NET® = (NET, SP, n) where

(1) SP < Pis a set of structured places (s-places, for short) such that ¥pe SP: ®p = 0;
(2) m: SP— P(P — SP) a function that associates each s-place with a set of simple ones.

Notice s-places have no input transitions. Now we are ready to give a basic definition
of net which we will use in this paper.

Definition 3.5. A structured Petri net is a tuple N = (LNET?, H, SL> where

(1) LNET? a structured labelled net;
(2) H < P — 5P a set of head places;
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(3) SL = SP a set of tail s-places.

The class of structured Petri nets will be denoted as &. Further if this does not result
in a confusion, structured Petri nets will be referred to as nets, Moreover, we will denote
these netsasatuple N = (P, T, o, SP. n, H, SL}. When we want to stress a form of this
net (P or T') we will use appropriate indices, for instance, N7, N7, etc. For a net N we
also define a set of all tail places L = Upe s T( P).

Graphically, transitions and places will be represented as boxes and circles, each
s-place pe SP containing a set of inner places 7( p). Places and transitions are connected
by directed arcs. Head and tail places will be identified by extra incoming and outcoming
arcs, respectively.

Thus a structured Petri net is nothing but a net plus some additional information
about its initial and terminal states. We assume that an initial state of net N corresponds
to the marking of all head places. We consider a net is in a terminal state if each tail
s-place has at least one marked internal place.

Define a marking of net as a function M: (P — SP)=1{0,1,2, ...}, ie. an allocation
of tokens among simple places. Here we do not define an internal marking M, explicitly
and assume it is equal to M, = {(p, Dipe Hy w{(p, 0)lpé¢ HY. We assume a net has
conventional firing rules [28] which are omitted here. As for the manipulation with
s-places they will be explained a little later. We write M [ M’ when a transition  occurs
at the marking M to yield a new marking M". If v = t;¢, ... 1,e T*, then M[v) M’ means
that there exist M,, M,, ..., M, such that Mo M [y M, ([t.>M’. M is said to
be reachable from M. M [» M’ means that there exists v e T* such that M [v) M, The set
of all reachable markings from M is defined below as [M ) = MM [>M7,

It is intuitively clear that a choice of a basic alphabet and encodings of places and
transitions (P and T') do not affect the behaviour aspects of nets. Therefore we will define
net up to its isomorphic class.

Fig. 2. S-normalization
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Definition 3.6. Let N,. N, be nets in P-form which are defined with the aid of basic
alphabets B, and B,, respectively. Then N, is isomorphic to N, (N, = N ) iff there exists
a mapping a: B, = By such that pe P <sa(ple P, 1T =alr) = (a®), ali),
a(*VeT;, o) = oa(n), peSP<a(pleSh, m(p)= m(a(p)), peH <=a(p)e
e H,, pe SL, <= a(p)e SL,. Here a(X) = {a(x)|lxe X}.

Now we introduce three normal representation forms of a net and corresponding
normalization procedures which will be required for us.

We will consider a net N to be in a structured normal form (s-normal, for short) if all
its s-places have no output transitions, ie.. YpeSP:p* = 0. The s-normalization
procedure is as follows. First we remove all s-places with output transitions
p,€ SP:p® # 0. Every transition rep? is replaced by the set {tflpe n(p,)} where each
transition is labelled by the same label like ¢. Each internal place p € x( p,) is also replaced
by the place (*p. p. p® u {1plte p*! 5. Fig. 2 contains an example of s-normalization. Here
B = {py, P2y P3s Pas Pss Pos lis I 13, 15} is @ basic alphabet. There are two s-places ps and
pe With 7(ps) = { Py, P2y Ps}s ®(ps) = {ps}, place p; having an output transition. The
s-normalization that is to “open” place p; results in some new transitions encoded by
taPy. taPs. tsps. Thus the s-form is nothing but an abbreviated notation of nets and, in
fact, s-normalization defines firing rules for structured nets by reducing them into
well-known Petri nets.

We will wnsider a net N to be in h-form if each its head place has no input transitions,
i.e. YpeH: ®*p =0. There is a procedure of h-normalization, called root- unwinding
[13, 14]. For each cyclic head place, i.¢. a place having 1nput transitions pe H: *p # 0, we
define one copy p. For each its output transition 1€ p® we also define one copy ¢ f which
has the same sets of input and output places except ﬁ:sr the fact that each input cyclic
place p is replaced by its copy p. The labelling of t coincides with that of i, ie.,
a(f) = a(1). In a set of head places all cyclic places are replaced by their copies. More-
over, if a cyclic head place belongs to a tail set then its copy is also added to this set. Fig. 3
shows an example of A-normalization.

A net N will be considered as 1-normal if for every tail s-place pse SL its internal set

@'n —

Fig. 3. H-normalization
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Fig. 4. L-normalization

has at most one place without output arcs, i.e., |{ pleea(p,), p* # 0} < 1. If this is not

the case we can l-normalize a net by merging all such places into one, as shown in Fig 4.
Procedures of s-, h- and I-normalization of a net N will be denoted as s(N), h(N),

L(N). It is casy to show that s(s(N)) = s(N), h(h(N)) = h(N), 1 (1(N)) = 1 (N).

4 OPERATIONS ON NETS

In this section we introduce an algebra of regular nets by extending Kotov's algebra
onto our definition of nets. First of all we define a class of atomic nets.

Let ae X, be a symbol. Then an atomic net which corresponds to this symbol is a net
(in P-form): N, = <P, T, o, SP, m, H, SL) where P = {200 T={p k1, {0,
o(ipih b, {p))) = a, SP = {ps}, 2= {(ps, { p:})}, H = {p,}. SL = { p;}. The graphical
representation of an atomic net is shown in Fig. 5. Sometimes, we will write simply a
instead of N,.

Fig. 5. Atomic net

Now we define four operations on nets which are generalizations of corresponding
Kotov's operations. These are join, exclusion, iteration and parallel composition. Nets
which are built with the aid of these operations and a class of atomic operations form
a class of regular nets #. If an operation of parallel composition is not used we have a
class of primitive nets 2,

Now we give some preliminary notations. Let p,, p, € P be places of a net N in T-form.
Then a merging of these places is a new place p, ® p, = (*p, U p®, j, . p® U p®>. If
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P, Pc P then AP, ={p @p:lpeP, p,ePh}. For P-form of net N we have
h®L=huld L, fuHad TRL ={n®nnel,Leh}, T, LT

Let N=<(P, T o, SP,n, H SLY, N, =<P, T,, 00, SP, m, H,, SL,>, N, = {R, T,
&, SB, m, H,, SL,) be nets.

1. A join operation. A join of nets Ny, N;e# isanet N = (N, N,), where N is built
from N and N7 as follows:

T=Tuwul,o=0U0,
P=PuP —(SL,uL,uH,)USL @ Hyu L, ® H,

r=mum—{{pmPpeSLiviim ®p, m(p)@p)lp @ peSL @ Hy}
H=H,, SL=SL,.

In other words, nets are united in such a way that all tail s-places of the first net are
merged with head places of the first net. It should be noted that the resulting net N is not
s-normal and so we can s-normalize it. Fig. 6 shows an example of this operation. Here
the first net has two tail s-places and the second one has two head places. A join of these
nets results in Cartesian product of the places, four new places being generated.

Fig. 6. Join operation

2. An exclusion operation. An exclusion of nets Ny, N, e # is a net (M, ON;) =1 (N)
where N is built from h(N]) and h(N7) as follows:

TZTTUE! o=0 W,
P=PuP —(HuH,uSL, wSL, v L, wl;)u
uH @H, uSL,®SL, uSL, @ L, u L, ® SL,
SP = SP, USSP, — (SL, u SL,)U SL, ® SL,
r=mum—{(p, XpeSL, @ SL;}u{(p, ® pr. m(p)) ®{p}v
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Uil @ mip)lp @ p,eSL, ® SL,}
H= H| @Hz., SL-= SL] @'SLI

Less formally, this operation unites two nets in such a way that their sets of head
places are merged. The same is done with sets of tail s-places. Note that previously nets
Ny and N, are h-normalized. The obtained net N, in its turn, may not be in 1-normalized
form and so we must l-normalize it. Fig. 7 shows an example of this operation.

Fig. 7. Exclusion operation

3. A parallel composition. A parallel composition of nets Ny, N;e® is a net
(N, lIN;) = N where N is built from N/ and N? as follows:

Fig. 8. Parallel composition
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T=TulhvuT,—T.,.L,={t1®ulnel, Leh, o) =0(h)#1
T.=it, el he i, alt) = aih) # 1)

o=g T — {{I* H}“E TumEU{“I @ fa, C'-IUI}HII @ 'r.'.’E I;_-rrr}

SP=SPuSP,n=mum,H=H,wvH,, SL=SL, v SL;.

In other words, parallel composition unites two nets by merging those transitions
which are labelled by the same names. This operation differs from a similar Kotov's
operation of superposition, by that it does not merge places at all. Fig. 8 contains an
example of this operations.

4. An iteration operation. In order to avoid cumbersome definitions we give a restric-
ted form of an iteration, namely, only for primitive nets. Nevertheless, it is sufficient for
many applications. Let N e #be a primitive net. It is clear that it has single head and tail
places, i.e.. |H| = |[SL| = 1. Let H = {p,} and SL = { p} be such sets. If |z(p))| = 1 then
the net N’ = «(N) is obtained by merging head and tail places: T'=T, o' =0,
P=P—(HUSLULYWWL®H, SP'=SP—SLUSL®H, o' =rx—{(p.. m(p)}v
Ui P ® pr. m(p)) H = m(py), SL = {(p, ® py)}. If |7(p)l = 1 then we first split the head
place p, together with its output transitions, i.e. we add a new place p, and a set of new
transitions {7|t€ p®} with o(f) = o(r). After that we merge place p, with the tail s-place
pyin much the same way as above. Moreover, we add the place p, to the tail set. This
enables to take into account a possibility to execute the net zero times which also
corresponds to our intuition of an iteration operator. Fig. 9 shows examples for both
cases.

Fig. 9. lteration operation

Thus these net operations are much more satisfactory for generally accepted intuition.
Indeed, the exclusion of nets shown in Fig. | results in a net with wanted behaviour, see
Fig. 10. Here we build a net N = (a0« (b)). Once the transition a has fired, transition b
cannot be enabled at all and vice versa. Moreover, an initial marking is at the terminal
one. This formalizes an execution of b zero times. Fig. 2 shows a net (N e).
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Fig. 10

5 AN INTRODUCTION TO MACRONETS

In this section we extend our algebra by introducing more general nets called ma-
cronets in order to account for disruption.

Informally, a regular macronet (RMN) is a regular net whose set of places consists of
two disjoint sets of simple places and macroplaces. Each macroplace contains an own
inner macronet. RMNs have following firing rules. A transition having an input macro-
place is enabled if the inner macronet of this place has at least one token. The firing of
a transition with an input macroplace involves removing one token from inner macronet
regardless of the place where it is located. If the inner net has parallel fragments, i.e. this
net was built with the aid of parallel composition, tokens are removed from each of them.

If the transition has an output macroplace, tokens are put into all head places of the
inner net.

Fig. 11. Example of a macronet
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An example of RMN is presented in Fig. 11. This macronet contains a single macro-
place p, which has an inner regular net. At the beginning, transitions a and b of the
internal net are enabled and can fire. At any time during execution of the internal net the
transition e 1s also enabled. If it fires, a token, whenever it may be ( py, ps. ps) 15 removed
from the internal net and placed into p,.

Fig. 12 contains an RMN which describes a control structure of the well-known class
2 of the 150 transport protocol [16]. This protocol is defined using the set of command
namesX=XY u L v uXuX whereX ={ICR,|CR1CC,|CC}, % ={1DT, |DT,
T1AK, |AK}, E, = {1ED, |ED, 1EA, |EA}, Z, = {1DR, | DR, 1DC, | DC}, E; = {{N_DIS,
TN RES} are sets of command names for connection establishment, normal data trans-
fer, expedited data transfer, disconnection and error release procedures, respectively.
Unlike the original specification, this structure is slightly regularized. In particular, the
procedure of connection refusal is provided by the disconnection procedure. Thus after
transmitting a [CR the remote entity may refuse connection using a disconnection
procedure. The entity can also use a disconnection procedure before a connection
establishment (head place p, is marked). When an entity is at data transfer phase, three

S e

iCR tCR

&

\. IN_DIS '/ \. tN_RES

Fig. 12. Transport protocol




Communication protocols 553

parallel fragments can be performed, namely normal data transfer, sending and receiving
of expedited data. At any time errors from the network level can occur. In this case the
execution of all procedures is disrupted by removing tokens from the internal net and
putting a token into head place p,.

6 FORMAL DEFINITION OF MACRONETS AND A DISRUPTION OPERATION

Now we give a formal definition of a regular macronet and its firing rules.
Definition 6.1. A regular macronet is a tuple MN = (@, W, N,, > where

(1) @ ={N,, N3, ..., N,} a finite set of regular nets, a net having no common elements:
TInT=FEnFE=0,i#j

(2) W={p\. p. ..., p,} finite set of macroplaces such that Vi3j:p,e B;

(3) Ny¢0Q an external regular net.

(4) B: W — Q a function of macroplace definition.

In addition, we restrict the function f by forbidding a recursion in the definition of S.
Notice a regular net is a special case of a RPN provided that 4 = W= =0, N, # 0.
Now we generalize the above operations onto RMNs. Let ope{:, 00, |. #} be a

net-operation and MN, = {Q,, W,, Ny, B>, MN, = ¢Q,, Wi, N, B> be macronets.
Then define

MN = (MN, op MN,) = {0, v Q,, Wi u Wi, (Ny op Npp), Biu B,

i.e. the operations are defined with the aid of corresponding operations on external nets.
Similarly, * (MN) = <Q,, W, = (Ny), B,).

Now we define a new operation on macronets that, unlike previous ones, results in
inclusion. Let the external net Ny, be primitive and its head place not a macroplace, i.e.

Npe@, Nprn W=0. Then a disruption operation of MN, and MN, builds a new
macronet:

MN = (MN, CMN,) ={Q, v @, {Ny}, W v W, uH,,
Noxs Bio B w{(p, Nylpe Ha}) .

Fig. 13, Disruption operation
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Fig. 13 shows an example of this operation.

Thus, macroplaces in RMN result from the use of the disruption operation. We can
define the disruption operation within a class of simple nets and hence define a transla-
tion procedure of RMNs into simple nets. This operation is denoted by “@". A class of
nets built using this operation is denoted by Z.

Let /. N,e# be primitive nets. Then the net N = (N, ® N,) is built as follows:
P=PRuP,SP=SBuSPR,r=mum, H=H, 6 SL=SL,,
T=TUT —{dte Hia} U U, e D,(N,), where D,(Ny) = {({{p}. ip. (*)lpeR,
o=o0 v —{(t al)lte Hyo} wit', o))lt’e D,(N,)} .

Fig. 14 shows a net which is built from the net of Fig. 11.
Let N, €%, N, €2 be nets. Then N = (N, ® N,) is defined in the same way as above,
but for D,(N,) it is determined recursively. Let N, = (N{[IN{). Then

D,(NJ||NY) = {(® w®n, hiy, ()11, € D,(NY)), e D,(N)}.

Fig. 14

For other operations, D,(N; ap N) is determined simply as a union of D,(N{)and D,(NY)
where all input places occurring in merging are modified correspondingly. For example,
D,N[®N{) = = D,(N]yu D,(N]) — {t'[*(t+") = H,}. For simplicity we omit these formal
definitions. Fig. 15 shows a net which is built from the macronet of Fig. 13.

Thus for each RMN we can build a corresponding net. RMNs are an abbreviated
notation of nets which belong to class %. Undoubtedly, this abbreviation is very useful.
Indeed, if we “‘unfold” the RMN of Fig. 12, we obtain a very large net which is hard to
comprehend and hence to use.

Proposition 6.2. 2 c R ¥ = .F

Proof. All strict inclusions are proved by means of simple counterexamples. The first
inclusion is trivial as the net a|b does not belong to primitive nets. The second one is
proved by the net shown in Fig. 14 which does not belong to #. This can be stated
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S
Fig. 15

directly by looking over its top-level operations. If we remove a transition ¢ we obtain
the net which does not belong to &. O
In other words, the disruption operation does extend the algebra of regular nets and

cannot be expressed in other operations. Let us state another fact which will be useful
for us.

Proposition 6.3. Each net Ne % is safe, i.e., VpVMe[M): |M(p)| < 1.

The proof is performed by induction over the net structure. Obviously, each atomic
net N,, ae Xris safe. This is a basis of the induction. Let N, N, € & be safe nets. It is easy
to show that all nets (N, : N.), (N, ON:), (N, [|Ns), = (N;), (N, ®N,) are also safe, which
directly follows from the definitions of these operations.

7 A NOTION OF EQUIVALENCE

At present a wide variety of equivalence notions for parallel processes are known,
most of them being represented in terms of Petri nets [29]. At the same time, the algebra
of regular Petri nets makes use of only a classic notion defined as equality of languages
produced by nets. This notion seems to be weak for many applications because it does
not preserve some important behaviour properties such as deadlock-freedom etc.
Therefore we give a stronger notion which is based on a well-known notion of bisimula-
tion equivalence proposed in [27] and developed in many papers [7, 14, 15, 23, 34).

First we extend the labelling function o (see Definition 3.3) to a homomorphism
g T* = or*. If M M’ and o(t) = a we will also write M[a> M'. Define o: T* — X*
obtained from o by removing all r-symbols from strings ve Z*. If weZXZ*, then
M[w)> M’ means that 3yeT*: M[y> M’ and a(y) = w.
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Definition 7.1. Two nets N, N, € & are (weak) bisimilar equivalent (N, ~ N,)if and only
if there exists a relation R = [M,,} x [M,,> such that

(1) (Mg, My)eR
(2) (M, My)e R= (M, [ap) M{=3IM;: M, [a)) M;:(M|, M])eR)
(3) (M, My)e R= (M, [a)) M;=IM|:M, [a)) M[:(M|, M3)eR)

It is easy to show that this equivalence is a congruence relation with respect to join,
iteration and parallel composition operations. On the other hand, this equivalence is not
a congruence with respect to operations of exclusion and disruption. For example,
althougha ~ aand b = (y; b)) but a0 b = aO(y; b) and a0 b = a®(y, b). For this reason
we enhance the discriminating power of bi-equivalence similarly to [7].

Definition 7.2. Two nets N,, N, €2 are r-equivalent (N, =, N,) iff

(1) N, = N, with the relation R € [M,,)> x [My);
(2) (M, My)eR= (M, = My <=M, = My,).

Theorem 7.3. An r-equivalence is a congruence relation with respect to operations ;, 0,
I, =, ®, ie. if N; = N;and N; =, N then

(1) (N7; N2 =, (N Ny)
(2) (NyON;) =, (N'ON7)
(3) (NTINY) =, (NYIIND)
(@) =(N7) = «(N])

(5) (N @ N7} = (N{"*N)

Proof. Let R, and R, be relations of equivalences N, =, N, and N; =, N7, respectively.
In order to prove each relation (1)—(5) we build a new relation R from R, and R, and
show they satisfy all conditions of definitions 7.1 and 7.2. Build, for example, R for the
clause (4). Due to the proposition 6.3 we can express a marking as a subset of places:
Mc (P—SP).Let R= R, U (R, — (Mg, My,)). The relation is a bisimulation. Denote
N’ = (N, ®N;) and N" = (N;@®N;). Obviously, (M, My)e R because M; = M, and
My = My,. Assume (M|, M)e R and M, [a}> M; in the net N|. If M|, M, = P’ then
due to R, there exists M, such that M| [a)>> M;. If M|, M; € P, then due to R, IM;":
M[aby M. Consider the third case M| S P/, M; < Py). Assume M| [t'> M3,
o’(1") = a. Then due to the definition of disruption we have t'e(H;)* and 31" e(H,)*
such that M [t"> M;. Due to N; =, N; we have also IM;: M{[t"> M3, o"(t") = a. If
M{[w)M;, o'(w) =a we can divide w into three parts w = w, tw, where w, e(T})*,
1e(H3)*, wy e(Ty)* and reduce to previous cases. Consequently, the condition (2) of the
definition 7.1 is valid. The proof of (3) is absolutely symmetrical. Proofs of other clauses
are similar and omitted here. O

Using isomorphic and bisimulation relations we can formulate various useful proper-
ties for regular macronets. For example it is not hard to show that:

N,ON, = N,ON,
[H| DN:}DN} = N. D{NzDN:q]
N, ON, = N,
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(N, ON;); Ny = (N ; N:)O(N:; Ny)
(N3 N7, Ny = N, (N:: N,).

Other well-known equalities can be rewritten from CCS [22], ACP [7], etc. But we will
not do this here. We only formulate some equations without proofs which concern the
disruption operation:

a®b=alOl(a; b)

a®N = (a; N)ON

(a; N))®N; = (a; (N, ®N,))ON;

(N, ON,)®N; = (N, ®N;)O(N, ®N;).

8 RELATION WITH OTHER WORKS

There are a number of approaches (1, 9, 20, 24, 30—33, 35] which enable us to
represent complex nets by a composition of simpler ones in order to describe a system

hierarchy and to simplify an analysis, We can distinguish all these models by the
following features:

® What elements of nets can be macroelements (places or transitions)?

® What nets can be internal for these macroelements?

® How does the execution of macroelements relate with the execution of internal

nets? '

Macrographs [1, 31] and complex nets [33] use macroplaces while hierarchical nets
[9, 20], D-nets [35], constructable nets [24] and recursive nets [30] use macrotransitions.
In order to guarantee correctness of the resulting net some subclasses of Petri nets are
used as internal nets like WF- and D-blocks [35], regular Petri nets [9], conservative nets
[31], A-and P-blocks [33]. In all these models there is a strong relation between the
beginning (end) of the execution of the macroelements and the beginning (end) of the
execution of the internal net. Therefore each internal net has a some sort of input and
output elements. In our approach, however, the removing of a token from a macroplace
does not depend on the state of the internal net and can occur at any moment. In other
words, the execution of an internal net completely depends on the state of the outside net.
Thus, we introduced a new specific kind of net hierarchy, which can be used in combina-
tion with the above ones.

Let us compare our algebra with other algebraic approaches (most of them have been
considered in [26]). Our algebra can be attributed to denotational approach to a semantic
definition of abstract languages such as CCS, TCSP, ACP, etc. We started with one of
the earlier works of this stream [20, 21] and enriched it by accounting for practical needs
in the area of protocol engineering and fundamental ideas of the above calculus. As a
result we have obtained an algebra which has many common features with other ones [10,
13, 15, 25, 34]. One of the main differences is a new treatment of a terminal state of a net
defined with the aid of tail structured places. This enables to define an operation of
sequential composition (join) in a very natural way. It should be noted that other
approaches have either only a prefix form of this operator [15, 25] or express it in terms
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of parallel composition [23, 18, 34]. In [13] a terminal state of a net defined as absence
of tokens in all places and so sequential composition looks like extremely cumbersome.

Another main difference of our algebra consists in using the new disruption operation.
Note, however, operation of disruption itself is not new. The similar operation called
disabling is used in LOTOS [18]. Also. the operation called mode transfer is defined in
ACP [6]. But both these operations are defined in the framework of an interleaving
approach and, like a parallel composition, can be expressed in terms of basic operations.
We defined disruption in terms of Petri nets that enables us to describe disruption of

processes with an explicit concurrency. Moreover, we give the suitable graphical re-
presentation of this construction. You can say that it seems to be more reasonable to

define a net interpretation of the disruption in the framework of an operational approach
to a net-semantic. We believe it is quite right but due to the statement of our problem
we are forced to follow and thus to advocate the denotational approach.

9 CONCLUDING REMARKS

The main result presented here is an algebra of regular macronets that serves as a
formal basis for the development of special and practical methods of protocol theory:
design and specification, validation, hierarchical composition, etc. For example algebra
of RMN may be used in composition with one of the extension of Petri nets for complete
protocol specification including operations with parameters and variables. RMNs
provide graphical structured representation of protocols and allow to design, describe
and possibly implement protocols visually. Moreover, the algebraic approach simplifies
the reading and understanding of protocols. In fact, this process reproduces protocol
design and description

Casting of more realistic equivalence into Kotov's algebra enhances its analytical
power. In particular, it enables to solve a protocol verification problem as a demonstra-
tion of equivalence between protocols and services [5]. The fact that the equivalence is
a congruence relation provides a compositional style in protocol design and specification.
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