HIERARCHICAL COMPOSITION OF PROTOCOLS
N. A. Anisimov

Avtomatika i Vychislite’naya Tekhnika,
Vol. 24, No. 1, pp. 3-10, 1990

UDC 681325

The author deals with the formalization of the concept of protocol hierarchy within the
framework of the theory of Petri nets. A formal definition of the concept of entity and of its
points of interaction is introduced. An entity is defined as a Petri net, while interaction points
are defined as the set of its markings. The operation of composition of entities is presented.
Rules are given for formalizing operations with parameters and variables in the composition
process. A description is offered of the structure of Protocol entities as a composition of entities
describing the protocol and the service furnished and required. The concepts introduced are
illustrated by the procedures of Recommendation X.25.3 and of the class-0 transport protocol.
The concept of timer and of procedures for its use is formalized.

A central problem in developing software for computer networks is the development of the set of protocols
making up the multilayer hierarchical structure. Recen , there has been universal interest in changing over
gradually from protocols directly to rules for configuring them into protocol sets [1,2]. This is a consequence of the
fact that work on specifying the protocols of most layers has been completed, as well as of the now-prominent
problems of compatibility of standards of different levels (see, e.g., [3]). Entire protocol sets are now becoming the
object of standardization [1]. All this raises problems of formalizing the concept of protocol hierarchy and of
developing rules for their hierarchical composition to the status of pressing problems in protocol theory.

Whereas there have been many studies dealing with protocol specification and analysis, problems of
formalization of protocol hierarchies have as yet received much less attention.

At the same time, such important characteristics as compatibility of implementations, complexity and
efficiency, and correctness of operation depend on the mode of hierarchical composition of protocols. Earlier
studies along these lines, which employed formal grammars [4] and Petri nets [5], made attempts to establish a
direct correspondence between the execution of protocol commands of different levels. Paper [6] proposed a simple
hierarchical composition rule based on the operation of superposition of the algebra of regular Petri nets [7]. In
practice, however, in the case of complex connections between layers, these approaches become unsuitable, since
they do not rely on the Basic Reference Model of Open Systems Interconnection [8], which has a well-developed
conceptual system for representing protocol hierarchies on an informal level. Later studies along these lines relied
on the concept of protocol entity [9]. The notion of protocol entity was formalized on both the level of formal
models [10-12] and on the level of protocol specification language. An example of the latter approach is provided
by the languages OCA [13] and PDL [14], whose constructs directly contain terms of the Reference Model.

This paper deals with the formalization of the concept of protocol hierarchy on the formal-model level:
We introduce a new (and, in our opinion, felicitous) interpretation of the concept of protocol entity in terms of Petri
nets. Our work is a further development of the formal model of [15], intended for protocol development and
description, and constitutes a more complete and more highly elaborated version of [16].

INTRODUCTION TO PROTOCOL HIERARCHY ‘

A hierarchical protocol system can be represented as a single unified protocol. Figure 1 shows a schematic
depiction of a two-layer system, containing N- and (N + 1)-protocols and (N = 1)-service. Here the N- and (N +
1)-layers can be represented as one layer in which the N- and (N + 1)-entities form a single entity, while the N- and
(N + 1)-protocols form a single H-protocol. The formats of the H-protocol commands have an embedded
structure, and comprise the N-protocol command formats, which can contain commands of the (N + 1)-protocol.
© 1990 by Allerton Press, Inc.

o
: - (NH)- (N+1) - protocol L[wen- :
p | oentty [T ;7 entity :

| - -

R Y e
Mo | ¥ - protocol AL
|} entity | | {entty {1
— i .J

(N-1) - service

Fig. 1. Protocol hierarchy.

The sequence of execution of H-protocol commands satisfies the N- and (N + 1)-protocols. As compared to the
N-and (N + 1)-protocols, however, the H-protocol contains considerable additional information (e.g., information

- on the N-protocol commands that contain (N + 1)-protocol commands; how the identifiers and parameters of the
N- and (N + 1)-protocol commands are related; how the execution of N-protocol commands affects that of (N +
1)-protocol commands; and so forth). All this information should be contained in hierarchical composition rules.
It should be noted that the information on hierarchical dependence is global rather than local in nature, and should
also be an object of standardization.

According to the Reference Model of Open Systems Interconnection, information on hierarchical protocol
dependence is contained in protocol entities. N-entities establish the possible sequences of execution of N- and (N
= 1)-service primitives, as well as of N-protocols. Interaction of entities within one system is effected via service
access points, at which service primitives are executed. Consequently, formalization of hierarchical protocol
dependences involves formalization of protocol entities and of their interaction rules.

FORMAL DEFINITION OF ENTITY

We will introduce the basic concept of entity on the level of control structure. This suffices to demonstrate
the basicideas of the proposed approach. First we will give some necessary definitions from the theory of Petri nets.

Definition 1. A Petri net will refer to a combination N = <P, T, I, O, M,>, where P={py, pa, ..., Pn}
is the sct of places; T'={ty, fz,.. ., ém} is the set of transitions; /: PXT—={0, 1} and O: PX T—{0, 1} are the
input and output incidence functions; and Mp: P—-{0, 1, 2...}is the initial marking function.

Assume that T is some finite set of names, called an alphabet. Symbol r € E will denote some invisible
action.

Definition 2. A marking of a Petri net refers to a combination a=<Zq, o), where Z4is some alphabet,
while 0g: T—Zql{t} is a marking function.

In what follows, we will use letters @, 8, 4, ... to denote markings. A marking function marks network
transitions by names from Z; different transitions may have the same name, while some transitions may be
unmarked (i.e., marked by 7). Unmarked transitions are usually used to describe internal (invisible) actions.

Definition 3. Petri net N together with marker « is called a marked Petri net: Ne=(N, a). :

Definition 4. An entity refers to a collection E = <N, T'>, where vis a Petri net, called the structure of
the entity, while I'= {ay, az,... ax} is the set of markers, called interaction points.

Thus, an entity is a Petri net. An entity can be interacted with (and hence its operation observed) only via
interaction points. It is obvious that the entity will manifest itself in different ways at different interaction points.
A transition marked by a 7 at some point is assumed to be invisible, and interaction via it is impossible. A given
transition can be seen from different points (to be sure, under different names). It is also possible to have a case
in which a transition is seen from one point and not from another. A transition may be invisible altogether. If an
entity does not have points of interaction at all, i.e.,I' = @, then obviously it cannot interact with other entities, i.e.,
it cannot manifest itself in the environment.

An entity will be represented schematically as a rectangle with lines, representing interaction points, that
depart from it (Fig. 2a).

Fig. 2. Schematic representation of entity (a)
and of composition of entities (b).

COMPOSITION RULES FOR ENTITIES

Initially we will introduce the two ancillary operations of union and composition over networks.

Assume that we are given networks N' and N2, In what follows, we will assume that the networks have
dissimilar sets of transitions and places, i.c., P'\P?=@ and T'\\T2=&.

The union of networks N' and N? refers to network N =NIJN? = (P'UP?, T'JT2, U2, O'YO?, M,
UMo?), ie., two different networks are regarded as one network.

Assume that X = {x, x3,..., s} and Y= {yy, 4o, ..., 4} are two subsets of transitions of network N:X
C Tand YC T; the expression (N, X®Y) denotes the operation of merging of transitions, which is formally
defined in a manner absolutely analogous to the operation of merging of places [7], and involves the following.
Each transition x, is copied together with the incident arcs, for a total of / copies x;!, x2, ..., x¢, while each
transition y; is copied as k copies y;!, y72,...,y;*. Then each pair (x+/, y;%) is replaced by a new transition x, U
i together with the incident arcs: /(xiUy;) =1(x:) Ul (gy); O(x:ly;) =O0(x:)UO(ys).

Assume that for networks N! and N? we are given markers « and $, defined on the same alphabet: a =
(2, %a), B=<Z,7p). Then the composition of networks N! and N? in relation to markers c and B, denoted
henceforth as (N4;gN?), unites these networks, merging transitions with the same names. This operation can be
defined more rigorously as follows. Let 3 € . The set of transitions with the same name will be denoted as T, = .
{t/o(t) =a, t=T1}, i=1, 2. Then N= (V'atpN?) =p (N'UN2, Z), where Z= | T,'®@T.2

&z
It should be noted that this operation merges only visible transitions. Assume that network N* has marker

7. We set up a continuation of marker v, denoted by v*, for network(NV 12llgN?),in natural fashion: 0% (¢) =g,
(1), te=TY0% (tUt) =0y (t:) ;0% (£) =7, T2 We also continue network I'; '* = {a*), a*s...}.

Assume that E'=(N, T'!) and £?=(N?, I'?) are entities and that their interaction points ¢ € I and 8
€ I' have a common alphabet T, = Zg.

Definition 5. A composition of entities E' and E? relative to interaction points « and S refers to entity E

= <N,T'> for which N = (N'a]lsN?), T'=(T'"\ {a})*U(T*\\{B})".

In other words, a composition of entities relative to interaction points involves the composition of their
networks relative to the corresponding markers, after which these markers are excluded from the definition of the
cntity. Figure 2b offers a schematic representation of the execution of the operation of composition. Figure 3
shows an example of composition of entities consisting of a single transition. Here each entity has two interaction
points, and each transition is marked by two names. The composition is relative to points with the alphabet.

An elementary interaction in composition of entities involves merging of transitions. This mechanism is
well known as the "rendezvous” interaction scheme, and is widely employed in various formalisms [17-20]. The
composition operation is quite similar to parallel composition in CCS [19] and CSP [20], and is essentially an
expression of it in terms of marked Petri nets. In other words, a structural analogy has been provided for parallel
composition of processes.

éI t: tIU tz
TUTINIAT| || WL DAT T 2AT| — T.2AT] \L.2AT
¥

Fig. 3. Example of composition of objectives.
SPECIFICATION OF ENTITIES

In accordance with the definition of entity introduced, the description should involve specification of a
Petri net that describes the structure of the entity, and of a set of markers. Papers [6,15] propose a method of
algebraic specification of entities, although admittedly with one interaction point, specified only on a set of
protocol commands. At the same time, practical specification of protocol entities and their procedures makes
simultaneous use of multiple sets of commands (protocol commands, commands related to services offered and
required, timer-interaction commands, and so forth). In what follows, the algebraic method of protocol description
is generalized to the case of description of entities. :

Assume that we are given an entity E = <N, I'> to be specified, where -I'={a, ¢3,..., @}, ai=(Zs,
0;). Assume also that the interaction points have separate alphabets:2;(1Z;=2 for i » j. We will denote the set
Ii7=32U{r}. An elementary structure will refer to the symbol transition c&Z*XZ;¥X ... XZz%, ie., the
transition is specified not by a single name but by a set of names (a,%, a%,..., 2"}, where a;*<Z%. Since
alphabets Z; do not intersect, the symbol transitions can be specified as sets of names, where the symbol 7 can be
omitted. Thus, transition t, in Fig. 3 is specified by set {T_DAT, N-DAT}, while transition t, is specified by set

{N-DAT, L_DAT}. The structure of the protocol entity is specified by means of the class of elementary structures
and by the following operations; superposition (,); marking (n(}); iteration (*); adjunction (;); elimination (00); and
dissolution (O) [6].

Example 1. Disconnection procedure for X.253. Figure 4 shows the entity of the X.25.3 disconnection
procedure, whose formal description may be found in [15]. The entity has four interaction points, N, L, P. TM,
corresponding to services offered and used, to the protocol, and to timer operation. The points are defined on the
corresponding alphabets =~ ={{N_DIS,}N.DIS}, Zp={{L-DAT, {L-DAT}, Zp={{CL_R,{CL-R, {CL-C, {CL_
C}, Zru={ON, OFF, EXP}. Here it is assumed that protocol commands are transmitted by means of the data
primitives of the link layer {L_DAT and $L-DAT. For example, execution of the "Request Disconnection" service
primitive N_DIS corresponds to execution of the protocol command }CL-R, which is transmitted in the
primitive }L-DAT. The timer is activated in accordance with the procedure. Thus, activation of transition t, is
interpreted as execution of four different actions at different interaction points. Activation of transition t, will
correspond to execution of the protocol command 4CL-C, which arrives with the primitive +L-DAT, and also
deactivation of the timer. This transition is invisible for the service offered, i.e., for the higher-layer entity.

Example 2. Use of timer. Figure 5 shows the structure of a widely employed construct, known as a timer.
A timer is an entity (TIMER) that has one interaction point T defined on alphabet Zra = {ON, ‘OFF, EXP}, where
ON and OFF correspond to activation and deactivation of the timer respectively, while EXP corresponds to
expiration of the time-out. In formula notation, the timer structure has the form TIMER= (*(ON; EXP))°OFF,
Assume that E is the entity of the disconnection procedure from the preceding example. Use of the timer by this
entity is represented as the composition (Eralrar TIMER).

Example 3. Transport service. Assume that we have formalized entities of the transport, network, link,
and physical layers, denoted as EM(T,N), E¥(N,L), E*L,P), E'(P). Here T, N, L, P are interaction points
corresponding to transport, network, link, and physical service primitives. Then the transport service can be
represented as a single entity: Erg=EslxE5LlLE?pllsE'. The transport-service entity has one interaction point,
corresponding to the transport service. The remaining points become "invisible" after composition.

OPERATIONS WITH PARAMETERS

Up to now, only the control structure of entities has been considered. At the same time, operations with
parameters and variables play an important part in composition of entities. Synchronization of entities may involve

4

5

OFF

Fig. 4 Fig. 5
Fig. 4. Entity of X.25/3 disconnection procedure.
Fig. 5. Timer structure.

exchange of data or harmonization of parameters. Paper [15] introduced, for the purpose of providing a complete
protocol description, a formal model comprising a composition of high-level Petri nets (HLPN) and regular
macronets. This model will be used in what follows to describe operations with parameters in protocol entities.

Assume that A= {A,, 4,,...} is a set of names of attributes, each of which A, is specified on set D(A)).
The HLPN comprises an interpretation in which a marker is associated with an attribute vector, while transition
t, is associated with the exciting predicate H; and the procedure for calculating the attributes of the output markers
G;. An entity refers to the combination E=(N’, TV, where N’ is an HLPN, while each symbol @, € I canhave
attribute vector af A1, Az, ..., An). Transition attributes A can be attributes of markers of input and/or
output places of the transition. Upon activation of a transition, attributes A, are assigned certain particular values.
Thus, the activation of a particular transition differs in terms of the values of the attributes. Now, at an interaction
point of the entity, the vatues of the corresponding parameters and variables are accessible in addition to certain
transitions.

Attribute A of transition t; with name g; will be called free if procedure G; does not have rules for
calculating attribute A, i.e., it is assumed that Aj; can take any value from D(A;). Otherwise attribute A; will be
called nonfree. A free attribute models reception of a value from without, this value subsequently proceeding via
the output marker to the entity.

Let us consider an elementary operation of composition of networks N* and N?, i.e., merger of transitions
t, and t,, marked by the same symbol a<A,>. The resultant transition t, U t,is excited and can be activated when
transitions t, and t, are excited and can be activated, and with the same values of the transition attributes A, More
rigorously, assume that the transition attribute are defined as A; : = F, (A) for transition t, and A; : =F;(A) for
transition t,. Then for transition t, U t, we have H=H, A\ HAF, (A) = Fy(A).

This mechanism ensures several schemes of interaction via attribute A,;. Assume that attribute A, is free
for transition t,, but unfree for t,. Then it is evident that merging of transitions t, and t, describes transfer of the’
value of attribute A, from network N' to network N2 Merger of transitions with several attributes may correspond
to transfer of data in multiple directions simultaneously. This mechanism of data transfer is analogous to the
transfer of value in CCS [19]. If attribute A, is unfree in transitions t, and t,, then only processes with the same value
of attribute A, can interact via transition t, U t,. Local (interface) connections between entities in the same system
can be described by means of these mechanisms.

STRUCTURE OF PROTOCOL ENTITY

A protocol entity that is specified by means of several sets of primitives usually has a complex structure.
Even the entity of the relatively simple class-0 transport protocol of the ISO (21} is fairly complicated and difficult
to understand. In what follows, we propose a method of structuring protocol entities that are represented as the

5

1CR

1.4

IN.DIS m.os

Fig. 6 Make-up of transport object entity: a) transport service;
b) transport protocol; ¢) network service.

Fig. 7. Interface procedure of transport protocol.

composition of simpler entities. The method is illustrated using the example of the connection-establishment and
disconnection procedures for the class-0 transport protocol of the ISO [21].

Assume that Zp{ #T_CON.fT-CON,{T.CONED,fT_CONED.JT.DlS,fT_DIS}, Zw={{N-CON,}
N-CON,{N-CONED, + N_CONED, |' N_DAT, $N.DAT, {N-DiS,{N_DIS}, Zp= {}CR }CR 4CC.
$CC,DR} are sets of names of primitives of the transport and network services, and of the transport protocol.
Figure 6 shows the structures of the transport service, the transport protocol, and the network service. Figure 7
shows the entity of the interface procedure containing information on the relations between the execution of
service and protocol commands. For example, after a request for establishment of a transport connection }T-C
ON, the entity initiates a network connection by the. primitive | N..CON, and, after acknowledgment ($N_CON
ED)it sends the protocol instruction{ CR by means of the primitive { N-DAT. If, however, there is a failure or
refusal to establish a network connection (#N_DIS), then there is a similar refusal to establish a transport
connection ($T-DIS). The protocol entity can be represented as the composition of these four entities. This
representation readily yields a description in the form of a state graph, by setting up the marking graph for the
corresponding Petri net. It is easy to establish that the marking graph for the entity in question is analogous to the
transport-entity state graph that was given in [21].

CONCLUSIONS

We have introduced definitions of entities and of composition rules for them that enable us, first, to
describe protocol entities; and, second, to combine protocol entities of different levels into a single unified
hierarchical set. The concepts introduced will enable us subsequently to formulate and resolve problems of
~ correctness of protocol sets, their implementation, and performance analysis. The establishment of connections
between our model and protocol specification languages, as well as problems of automation of the process of
development of protocol sets, will also be the subject of further studies.

REFERENCES

1. E. A. Yakubaitis, "The MAP/TOP/SAI set of network protocols,” AVT [Automatic Control and
Computer Sciences], no. 2, pp. 3-7, 1988.

2. R.Jardins, "Towards the information society: world cooperation on open systems standardization,” in:
Computer Network Usage: Recent Experience. Proc. IFIP TC 6 Working Conf. COMMET"S8S, pp. 15-17, 1986.

3. S. V. Rotanov and D. V. Kutsevalov, "Matching of network- and transport-layer services," in: Twelfth
All-Union Seminar on Computer Networks [in Russian], part 2, pp. 9-13, Moscow-Odessa, 1987.

4. J. Harangozo, "Formal representation of the protocol hierarchy,” Proc. Europ. Comput. Congr.:
EUROCOMP’78, pp. 403-414.

5. M. Devy and M. Diaz, "Multilevel specification and validation of control in communication systems,"
First Int. Conf. on Distrib. Comput. Syst., pp. 43-50, 1979.

6. N. A. Anisimov, "Algebra of protocol structures based on the theory of Petri nets," AVT [Automatic
Control and Computer Sciences), no. 1, pp- 9-15, 1987.

7. V. E. Kotov, "Algebra of regular Petri nets," Kibernetika, no. 5, pp. 10-18, 1980.

8. ISO 7498. Information Processing Systems. Open Systems Interconnection. Basic Reference Model,
1983.

9. G. Le Moli, S. Palazzo, and G. Andreoni, "A model of entity for the definition of protocols and
interfaces," Protocol Specification. Testing and Verification, I; Proc. IFIP WG 6.1 Second Int. Workshop, pp. 249-
258, 1982,

10. G. Janole, B. Algayers, and J. Dufau, "On communication protocol modeling and design,” Lecture
Notes in Comput. Sci., vol. 188, pp. 267-287, 1985.

11. W. Cellary, M. Saikowski, and M. Stroniski, "Defining a transport layer using numerical Petri nets,"
First Int. Conf. Comput. and Appl., pp- 353-360, Beijing, 1984.

12. H.J. Burhart, H. Eckert, and R. Prinoth, "Modeling of OSI communication services and protocols
using predicate/transition nets," Protocol Specification. Testing and Verification, IV: Proc. IFIP WG 6.1 Fourth
Int. Workshop, pp. 165-192, 1984,

13. S.§. Zaitsev et al., "Facilities for describing protocol architectures,” in: Twelfth All-Union Seminar on
Computer Networks [in Russian], part 2, pp. 20-24, Moscow-Odessa, 1987.

7

14. H. Koenig and M. Heiner, "The PDL system - a unified approach to the specification, verification, and
implementation of protocols,” Computer Network Usage: Recent Experience. Proc. IFIP TC 6 Working Conf,
COMMET'85, pp. 15-17, 1986.

15. N. A. Anisimov, "Formal model for protocol development and description based on the theory of Petri
nets,” AVT [Automatic Control and Computer Sciences}, no. 6, pp. 3-10, 1988. :

16. N. A. Anisimov, "Formalization of protocol hierarchy on the basis of the theory of Petri nets,” in:
Packet-Switching Networks [in Russian}, part 2, pp. 228-232, Riga, 1987.

17. G. V. Bochmann, "Finite state description of communication protocols,” Computer Networks, vol. 2,
pp- 4/5, pp. 361-372, 1978. ‘

18. R. H. Cambell and A. N. Habermann, "The specification of processes synchronization by path
expressions,” Lecture Notes in Comput. Sci., vol. 16, pp. 89-102, 1974.

19. R. Milner, "A calculus for communication systems," Lecture Notes in Comput. Sci., vol. 92, 1980.

20. E.-R. Olderog and C. A. R. Hoare, "Specification-oriented semantics of communicating processes,”
Acta Informatica, vol. 23, pp. 9-66, 1986.

21. S. V. Rotanov and D. V. Kutsevalov, Class 0 Transport Protocol for Local-Area Networks [in Russian],
parts 1-2, IEVT, Riga, 1985.

7 July 1988

