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Abstract — This paper addresses the problem of
prediction intervals for outbound calls generated
by predictive dialers. More specifically, the prob-
lem is to define the time interval for generating
the next call based on current and past informa-
tion so that operators (agents) have enough work
and customers are not waiting too long for the next
available agent. We will build a model of the system
comprising a number of processing servers (agents),
a queue, and a dialer defined in terms of queuing
system theory. In order to solve the problem we
propose the simulation approach. Based on past
and current information (e.g., queue length, num-
ber of busy agents) the algorithm simulates system
behavior and finds the optimal time for generating
the next call.

Keywords — predictive dialing, call center, queuing
theory

I. INTRODUCTION

Currently, call centers play a very important role in
modern business. They perform a wide spectrum of
functions such as reservations, sales, customer service,
and technical support. A call center can be defined as
a system that “consists of a managed group of people
working in a computer-automated environment who
spend most of their time doing business by phone.”
[7]. Usually the people who process calls are called
agents. Technically, call centers are based on technol-
ogy known as Computer Telephony Integration (CTI).

There are two types of call processing in a call cen-
ter: inbound and outbound. Inbound calls are origi-
nated outside the call center by customers, then reach
the call center where they are routed to agents. Out-
bound calls, conversely, originate inside the call cen-
ter, reach customers and then are processed by agents.

*To contact the author: E-Mail: anisimov@genesyslab.com

A typical application of outbound calls is a campaign
where customers are called by call center equipment.

There are several approaches to outhound dialing
where predictive dialing [6] is the most sophisticated
and effective one.

This paper addresses the problem of calculating
outgoing calls for predictive dialing. The software
system that controls the outbound dialing is called
Campaign Manager. Roughly speaking, the problem
is to define moments of outbound call launching so
that agents will have enough work and customers are
not waiting long in the queue for an available agent.
This task belongs to the area of queuing system theory
[3] where there are two main approaches — analytical
and simulation [2]. We will consider the pros and cons
of these approaches:

e An analytical approach is very easy to implement.
In fact, it is based on using some parameters re-
lated to input and output call low of the system.
This approach can be applied in a wide range
of the system parameters. It may be especially
useful for systems with a large number of servers
(agents).

e The main drawback of the analytical approach is
that we have to simplify the model of the system
to obtain precise formulas for predictive dialing.
Fortunately, in many cases it seems that this sim-
plification is not far from a real outbound dialing
process.

e On the other hand, simulation modeling reflects
real physical processes in a system and therefore
can be easily understood by users. That will help
in adjusting system parameters and increase con-
fidence in the results of calculation.
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The simulation approach allows the use of col-
lected information related to call processing in
the past.
be used for tuning the parameters of the sys-
tem (e.g., distribution functions) based on gath-
ered data.

In particular, the information could

This approach makes it possible to
take into consideration current information about
the system (e.g., queue length, number of ready
agents).

e The main disadvantage of the simulation ap-
proach (especially when applied to the on-line
mode) is the necessity for essential computations
that must be performed in a limited time. How-
ever, there may be a tradeoff between precision
and the speed of computation.

In this paper we consider the simulation approach.
The analytical approach reported in [1, 5] is recom-
mended for systems with a large number of agents,
because in this case the system behavior is more sta-
tionary and may be described with analytical approx-
imations. For a small number of agents we suggest
using the simulation approach since it is closer to re-
ality and does not require essential computations.

II. STATEMENT OF THE PROBLEM

The Campaign Manager scheme that will be re-
ferred to hereafter as the System is illustrated in Fig-
ure 1. It comprises the following elements: a call gen-
erator, a dialer, the process that waits for an answer,
a customer detector, a queue, and a set of agents. The
System operates as follows:

1. The call generator generates call inquiries using
a predefined strategy.

2. The dialer is a device that dials customers using
the phone number received from the generator.

3. The waiting process waits for an answer from the
customer’s phone during some pre-defined time
(e.g., three dialing tones). If there is no answer
during this time interval the waiting process de-
cides that the customer is absent and the call
is released. If the customer’s phone answers the
call is transferred to the Call Progress Detector

(CPD).

4. The detector detects the nature of the answer.
If it does not represent a live customer (e.g.,
fax or answering machine) then the call is re-

Otherwise the call is delivered to the

agents’ queue.

leased.

5. The agents’ queue keeps calls in the order of their
arrival, i.e., it implements the procedure “first-in-
first-out” (FIFO). If an agent becomes free then
he/she receives the next call from the queue. If
there are no calls in a queue (the queue is empty)
and there are available agents, then the call is di-
rectly distributed to an available agent without
staying in the queue. A call in a queue may leave
the queue before being processed by an agent.
This happens when a customer does not wait and
hangs up. Sometimes such calls are called nui-
sance calls [6].

6. An agent processes the call received from the
queue. Typically, there are two types of calls:
short calls and long calls. Short calls correspond
to situations where a customer immediately ends
the conversation and hangs up. The typical du-
ration of short calls is one or two seconds. Long
calls take place when a customer agrees to take
part in conversation with the agent and this typ-
ically lasts a few minutes.

Service
centre

No customer No answer

Preprocessor
Call
Generator

\

Inbound calls

Wi

X
(=]
[
3
=
7]

Figure 1: Outbound environment

The three elements Dialer, Waiting For Answer
process (WFA) and the Call Progress Detector (CPD)
(see Figure 1) cause some delay in call processing. We
will refer to these three elements as a call preprocessor.
In many call centers agents may also process inbound
calls that should be taking into consideration

The problem is to define a strategy for call gen-
eration by the call generator in such a way that the
following conditions are met:

o All agents must have enough work, i.e., agent uti-
lization should not be less then some pre-specified
rate poin-

e The rate of customers who have not waited for
processing and have left the queue should not be
higher then some specified value Ar,,,.. This
rate is usually referred to as an abandon rate.
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It should be noted that in general the task stated
above may not have a solution, i.e., the two require-
ments may not be satisfied simultaneously. Therefore
we will solve two separate problems:

e The abandon rate should be maintained at an
admissible level Ar,,,., while maximizing agents’
utilization as much as possible.

e Agents’ utilization is maintained at an admissible
level p,in, while the abandon ratio is as small as
possible.

At the moment of calculating the time for the next
call the generator has access to the following current
information about the System:

o The total number of agents in the System (note
that the number may vary). This value will be
denoted as m;

e The number of busy agents;

e The length of the agents’ queue, i.e., number of
calls in the queue;

e The number of calls in the preprocessor;

e The time that the call is in the preprocessor (for

each call).

The generator also has access to some historical infor-
mation such as:

e Actual time for call processing by agent for each
call;

e Actual time for call processing by preprocessor
for each call;

e Actual time of staying in the queue of those
calls that left the queue without being served by
agents.

III. MODEL OF THE SYSTEM

In this section we present a model for the System
described above. After that we formulate the criteria
of optimization during call generating.

A. Some assumptions

On the one hand the model is a simplified represen-
tation of the whole system. On the other hand, the
model is a strict formal representation that allows for-
mal treatment and reasoning about its properties and

therefore about the properties of the whole system.
The model is described in terms of queuing system
theory [3] and its graphical representation is depicted
in Figure 2.

Abandoned calls

® ”

(—

Dialer

Figure 2: Model

In terms of queuning theory the model is represented
as a network of queues that consists of two nodes
called server centers that are connected sequentially.
One center corresponds to the agents’ server and the
other one corresponds to the preprocessor.

In this paper we make the following assumptions
about the distribution functions of the system:

o Agents’ service times have exponential distribu-
tion with parameters 7 and 75:

t t
PLeTm 4 P27
+ 2,

fit) = { 6_16

if ¢+>0;
otherwise.

e An abandoned process has an exponential distri-
bution with parameter p;

e The preprocessor simply delays calls and relates
to a deterministic delay process with the delay
parameter 73.

Those who are familiar with Kendal’s notation of
the queuing system [3] will note that the agents’ sys-
tem is a multiserver system with general arrival time
and hyperexpotential service time: G/H2/m. The pre-
processor is a multiserver queuing system with loss.

We will use the following System parameters:

e 7 — the average time of processing long calls;

e 75 — the average time of processing short calls;

p1 — the probability of long calls;
e py = 1 — py — the probability of short calls;

e M — the capacity of the preprocessor;
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o T}, — the delay in the preprocessor;

p — the probability that a call will reach a liv-
ing customer and, therefore, will be placed in the
queue;

i — the average time that customer waits in a
queue before abandonment;

e m — the total number of agents;

Pmin — the minimal agents’ utilization rate;

o Ar,.. — the maximal abandon rate.

We will also use the variables p and Ar to represent
the agents’ utilization and abandon rate, respectively.

Graphically, a circle represents each agent in the
agents’ center. A service element in the preprocessor
(e.g. a line) is also represented by a circle. Tokens
placed in circles and queue cells correspond to calls.
Therefore in Figure 2 we can see that three agents
are busy with three calls, two calls are waiting in the
queue, and two calls are in the preprocessor.

B. Criteria of optimization

Now we are prepared to give a precise statement
of the problem. Let ty be an initial moment of time.
At this moment we have the current number of busy
agents Kg, current queue length (Jg, and number of
calls in the preprocessor Fy. Moreover, for each call in
the preprocessor we have the remainder time that the
call will stay in the preprocessor: tr;, 0 <@ < Py. We
have to calculate the time #; < ¢y when the generator
will produce its next call so that two requirements are
met:

e the average abandonment rate must not exceed
some maximal rate: Ar < Ar,q.;

e the average agent utilization must not be less
then some minimal rate: p > ppin.

It should be noted that in general the task stated
above may not have a solution. Indeed, as is known
from theory, for all types of queue systems in a stable
state the relationship between the average length of
queue ) and the utilization of agents p looks like the
curve shown in Figure 3.

Our requirements Ar < Ar,,, and p > pon is
graphically represented by shaded rectangular. From
the graph we can see that it is possible when the curve
is not intersected the rectangular.

In this paper we will assume that there are two
cases:

Ar *

Figure 3: Queue length and agent’s utilization

e The abandon rate should be maintained at the
admissible level, while maximizing agent’s uti-
lization as much as possible.

o Agents’ utilization is maintained at the admissi-
ble level while the abandon ratio is as small as
possible.

IV. PREDICTIVE ALGORITHM

In this section we present a method of calculation
for outbound calls. We give the necessary mathemat-
ical background and the algorithm derived from it.

A. Mathematical background

First, let us consider processes in an agents’ ser-
vice center. We will estimate two random processes
of queue length and number of busy agents. The first
is closely related to abandon rate and the last is re-
lated to agent utilization.

The process for defining the average length of a
queue has the following form:

t
Qt:QO—I—/I{](S:m}st_Dt_Sh (2)
0

where
1. Qo is a queue length at the initial moment of
time;

2. Control process N; makes the next jump at the
moment of entering the next call from a pre-
processor;
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i
3. The process D; = [ u@Qsds represents the average
0

abandonment of a client from the queue.

¢
4. The process S; = bfmf{@s > 0H(E + B2)ds de-

scribes the average processing of the calls.
Here I{x}is an indication function with I{z} = 1
when z is true and I[{z} = 0 if z is false.

Less formally, the formula (2) can be explained as
follows. ¢); denotes an average number of calls in the
queue at time ¢, i.e. () is a function of time. The first
member of the right side of the equation is the initial
number of calls at the beginning (¢ = 0). The second
member describes the number of calls which left the
queue to be distributed to agents within time interval
[0,t]. Roughly speaking, we sum all incoming calls
that are generated by the process N; but only when
all agents are busy (otherwise a new incoming call di-
rectly proceeds to an available agent without changing
the queue). The third member calculates all calls that
left the queue due to an abandon process (customer
hangs up). The number of abandoned calls depends
on the queue length ()5 and parameter pu characteriz-
ing the intensity of the call leaving. The last member
calculates calls that left the queue due to transfer-
ring to an agent. To accomplish this, we sum all calls
that have been processed by agents provided that the
queue at the time of finishing the call is not empty.

The process describing the average number of busy
agents is as follows:

1
K, = Ko+ [I{Q,=0,0< K, < m}dN,
0

1
_{I{Qs =0,0 < K, < m}K (2 + 2)ds.
(3)

The members of the equation have the following
meaning:

1. Ky is the number of busy agents at the initial
moment of time;

2. The second term in the equation corresponds to
average number of the calls arriving from the pre-
processor and being delivered directly to an avail-
able agent (i.e., the queue is empty);

3. The third term corresponds to the average num-
ber of freeing agents after finishing call processing
(long or short) provided that the queue is empty
(and therefore an agent will not be captured by
the next call).

Less formally, the formula (3) can be explained as
follows. It calculates the number of busy agents at
time t. To do so we calculate the arrived calls from the
dialer when the queue is empty and there are ready
agents (second member). We also subtract all calls
that have been completed by agents when the queue
is empty (otherwise the agent immediately receives a
new call from the queue).

Let us consider the behavior of the system in the
absence of incoming calls. The equations (2) and (3)
are transforming into the following;:

@t = Qo — Dy — 54, (4)

and

1 T2

(5)

Let us derive the formula for abandon rate Ar.

t
K= Ky — /I{QS =0,0< K, < m}l(s(212 + @)ds.
T
0

Abandon rate is defined as a relation of the aban-
doned call to all calls that left the queue during some
time interval. Clearly 0 < Ar < 1. Let ()1 — Qo = AQ
be the variation of the queue during the time interval
AT = t; — tg. Let also AQp be the number of calls
that left the queue due to abandon during AT. Then
the average abandon rate for the interval AT can be
calculated as follows:

AQp

a0 v

To calculate the average agent’s utilization p at the

interval AT we will use the formula:
> i1 K

p= ==t
n-m

ar =

(7)

where K; is the average number of busy agents at
the interval At; = ¢;41 — ¢; and n is the number of
intervals A¢; within the interval AT.

B. Method of calculation

B.1 General principles

The main idea of our approach is as follows. Start-
ing from time point {; we simulate the processes Q);
and Ky in the absence of calls from the generator.
Clearly, after a time these processes will decrease and
tend towards zero. At each step of the simulation we
estimate the abandon rate Ar. Based on this estima-
tion we determine the optimal time for generating a
new call by the generator.
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In simulation of these processes we will use the so-
called fized-incremented time advance approach [2] for
advancing the simulation clock. According to this ap-
proach, the simulation clock is advanced in moments
of exactly At time units for some appropriate choice of
At. After each update of the simulation clock we cal-
culate increments of Ky and ¢J; and update them. We
also calculate related parameters like abandon rate
and agent utilization. The value of At is chosen to
be small enough to make the probability of multiple
events (e.g. arrivals of calls) be negligible, yet large
enough that processing time is not excessive. There-
fore there should be a reasonable trade-off based on
practical experience.

The fixed-incremented time advance approach
seems to be more preferable for our case with respect
to the next-event time advance approach because we
need on-the-fly simulation to estimate the time inter-
val comparable with the next event time.

B.2 Generating random events

In simulation we will need to generate events having
some distribution function. We will assume that we
can generate random variations of U[0, 1] within the
interval [0, 1]. Let F'(t) = P{T <t} be the continuous
distribution function of random variable T'. Then the
conditional probability of the occurrence of an event
within the time interval [t,t 4+ dt] is

dF(t)
—ray O

Then in order to generate an event in interval
[t,t + A] for small enough A we calculate interval
a = 1—A—FF(t)' Clearly, @ < 1. Then generate random
value © = UJ[0,1] and check whether < a. If yes,
than we generate event. Otherwise, not.

It is not hard to see that for the case of exponential
distribution, i.e. F(t) =1 — e~ 7, we have

P{T elt,t+dt] | T >t} =

HTEUJ+M|T2G:%& 9)

That is in the case of exponential distribution the
probability does not depend of the time.

B.3 Algorithm for simulation @; and K

The algorithm of simulation processes @J; and K
works as follows. At initial moment it receives current
value of queue length (g and number of busy agents
Ky. The processes are calculated by sequence of steps,
each step being corresponded to time increment At.

At each step processes (); and K are calculated as a
meaning of N realizations of discrete processes Q*(t)
and K'(t), i € {1,..., N}. Each realization of Q'(t)
and K'(t) is calculated according to equations (4) and
(5). The algorithm stops when processes reach the
state where target criteria is satisfied.

B.4 Method for simplified case

To better understand the proposed method, let us
start with a simplified case. Consider a model derived
from the general model (see Figure 2) by removing the
preprocessor center. The resulting model is depicted
in Figure 4.

-

Queue

11e16/000

Figure 4: Simplified model

Queue lenght, Ko=10, Qo=2, N=1000
2,5
2
1,5
1
0,5
0 T
1 23 45 67 89 111 133 155 177 199 221 243 265

Figure 5: Queue length, Ko = 10, = 2, N = 1000

We will observe the system behavior in the absence
of incoming calls starting from the time t5. To ac-
complish this we simulate the processes J; and K,
starting from current values (Jo and Ky according to
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formulas (4) and (5), respectively. In particular, after
each At we calculate increments A and AK, new
values of @)y and K;. Clearly they will be decreased.

On Figures 5 and 6 the processes ¢J); and K; are
depicted. In this experiment we supply the system
with the following parameters: m = 10, py = 0.7,
py = 0.3, 71 = 120, /o = 5, p = 0.1. The initial values
are Ko = 10, Q9 = 2. The number of realization is
N = 1000.

Busy agents, Qo=2, Ko=10, N=1000

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273

Figure 6: Busy agents, Ko = 10, = 2, N = 1000

We will try to find the “optimal” moment for the
generation of the next call using processes J; and K.
It is clear that in stationary case there will be an op-
timal queue length (),,¢. Suppose we reach time #;
where the length of the queue is equal to optimal ).
The next call should be generated at time {5, which
is induced by one call', as in the following:

Q(t1) — Q(t2) + m — K(t2) =1 (10)

Here we use a fluid approximation considering that
the part of the call m — K(t3) directly transfers to
agents and the rest 1 — (m + K(%2)) is placed in the
queue?. The optimum of the interval [t{,t5] means
that during the interval the abandon rate is equal to

the maximal value Ar,,q..:

_ Alp
Ar(ty,ta) = e (11)

Here we also suppose that part of the new call

S Armax

m—K(t3) is transferred to agents and therefore im-
proves the abandon rate.

'We can also use a fluid approximation and set call length
equal to hit ratio p bearing in mind that this part of the call
passes through the dialer and 1 — p part of the call is cancelled

2Clearly, in his case m — K (t2) < 1.

at) &
Qo Q(in-0tz) + m-K(t 2=1
Qopt
Qt)-Qd)
ol

0 f, t
K(t) F'y

m

0 1 1 -

2

Figure 7: Finding the optimal interval. Qo > Qops-

Therefore to find the optimal time ¢y for generating
the next call we move the interval [t1,%3] from 0 to
the right until conditions (10) and (11) are satisfied.
Note that the length of the interval [ty, ;] will vary.
The time t5 will be the time for the next call.

All of the above assumes that the initial queue
length is greater than optimal, i.e., Qo > Qope. Sup-
pose that (Jo < Qpe. Let us continue the curve of
the queue to the “past”, see Figure 8, and find the
optimal interval [t,t3]. There may be two cases.

Q(t) &

tam

(i)

Figure 8: Finding optimal interval. Qo < Qop:-
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Case 1: 11 < 0,ty > 0 (Figure 8(i)). In this case the
point t, is the optimal point.

Case 2: 11,13 < 0 (Figure 8(ii)). In this case optimal
time ¢, is in the past. But we can not generate calls
in the past and therefore all we can do is to generate
the call immediately®.

Now, taking into consideration our inability to gen-
erate more than one call, we suggest the following
procedure.

1. Simulate processes J; and K; starting from the
initial values Jg+1 and Ky, respectively.

2. When we reach some ¢’ such that Q(t') = Qo,
remember ¢'.

3. Find the optimal interval [t1, 2] as defined above.

4. If it is impossible, i.e., if Ar(t1,t2) > Arpqa, for
all t1 and ¢, take t,,; = to. If we find [t;,¢3] such
that to > ¢/ then ¢, = to —t'. If to < ¢/ then

topt - to .

If we want to optimize (i.e. maximize) agents’ uti-
lization to some boundary value p,,;, while the aban-
don rate is as low as possible, we can also employ the
technique described above. However, instead of us-
ing the formula (11), we calculate agents’ utilization
within the interval [ty,t;] as follows:

Zf\io K(t')
T 2 Pmin

(12)

p(tlth) =

where the interval [ty, {3] has M intervals At with time
points ¢, 12, . tM+D) ¢ = ¢ ¢, = ((MHD),

B.5 Method for general case

The model in-
cludes the preprocessor that may contain calls at the
initial point of time. These calls should be taken into

Let us consider the general case.

consideration during simulation.
Let us modify the above methods as follows:

1. During simulation of processes ¢J; and K; we
will count arriving calls from the preprocessor.
More specifically, each call in the preprocessor
is equipped with the time of entry into the pre-
processor. At each time ¢; we check whether the
call should leave the preprocessor or not.

*If we have possibility to generate more then one call at a
time, we can generate Qopr — Qo = Q(t2) — Q(to) > 1 calls. But
this is contradicts our assumption about ability to generate no
more then one call at a time.

2. The transfer of a call from the preprocessor to the
queue can be modeled by a generator of random
variantes without any problems. Alternatively,
we can exploit fluid approximation and change
the queue Q'(;) = Q(t;) + (p— (m — K(t;))) and
the number of busy agents K'(¢;) = m if m —
K(t;)) > p. Um—K(t;) < pthen K'(t;) = K(;)+
p and Q(t;) is not changed.

3. When the last call from the preprocessor is trans-
ferred to to queue (or cancelled) at the time ¢
the simulation continues similarly as in simpli-
fied case. At this stage we obtain the optimal
time Z,p;.

4. Finally, calculate the resulting time as follows:

th =ty 4 top — Tp if 1 4+ oy > T Other-
wise we take t,,, = to and generate the next call
immediately.

Queue lenght, Qo=2, Ko=10, N=1000
2,5

1,5

0,5 \( \r

0

1 28 55 82 109 136 163 190 217 244 271 2908 325

Figure 9: Queue length, Ky=10,o=2, N=1000

In Figure 9 we show the process ()¢ in the system
with three cals in the preprocessor. Only two calls
reached the queue while the other one has been can-
celed (e.g., no answer) in the preprocessor.

V. CONCLUSION

In this paper we presented simulation approaches
to outbound call generation to be used in predictive
dialers. We focused on a simplified case where the call
processing and call waiting time have exponential dis-
tribution and the preprocessor possesses a fixed delay.

We can point out some direction for further devel-
oping this approach:
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1.

2.

Moving from idealistic distribution functions to
more realistic distribution functions. There may
be two possibilities:

e Selecting the most appropriate distribution
function from those widely used in practice
(e.g. normal, Erlang, Gamma, Weibull) and
fitting the parameters of the distribution.

o Making use of empirical distribution built
on previous experience.

Developing methods of adaptive control over sys-
tem parameters and distribution functions, in
particular. For instance that would be of great
importance when we do not know the precise to-
tal number of agents (e.g., agents are also in-
volved in other activities such as processing in-

bound calls).
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