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Abstract { This paper addresses the problem of

prediction intervals for outbound calls generated

by predictive dialers. More speci�cally, the prob-

lem is to de�ne the time interval for generating

the next call based on current and past informa-

tion so that operators (agents) have enough work

and customers are not waiting too long for the next

available agent. We will build a model of the system

comprising a number of processing servers (agents),

a queue, and a dialer de�ned in terms of queuing

system theory. In order to solve the problem we

propose the simulation approach. Based on past

and current information (e.g., queue length, num-

ber of busy agents) the algorithm simulates system

behavior and �nds the optimal time for generating

the next call.

Keywords { predictive dialing, call center, queuing

theory

I. Introduction

Currently, call centers play a very important role in

modern business. They perform a wide spectrum of

functions such as reservations, sales, customer service,

and technical support. A call center can be de�ned as

a system that \consists of a managed group of people

working in a computer-automated environment who

spend most of their time doing business by phone."

[7]. Usually the people who process calls are called

agents. Technically, call centers are based on technol-

ogy known as Computer Telephony Integration (CTI).

There are two types of call processing in a call cen-

ter: inbound and outbound. Inbound calls are origi-

nated outside the call center by customers, then reach

the call center where they are routed to agents. Out-

bound calls, conversely, originate inside the call cen-

ter, reach customers and then are processed by agents.

�
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A typical application of outbound calls is a campaign

where customers are called by call center equipment.

There are several approaches to outbound dialing

where predictive dialing [6] is the most sophisticated

and e�ective one.

This paper addresses the problem of calculating

outgoing calls for predictive dialing. The software

system that controls the outbound dialing is called

Campaign Manager. Roughly speaking, the problem

is to de�ne moments of outbound call launching so

that agents will have enough work and customers are

not waiting long in the queue for an available agent.

This task belongs to the area of queuing system theory

[3] where there are two main approaches { analytical

and simulation [2]. We will consider the pros and cons

of these approaches:

� An analytical approach is very easy to implement.

In fact, it is based on using some parameters re-

lated to input and output call 
ow of the system.

This approach can be applied in a wide range

of the system parameters. It may be especially

useful for systems with a large number of servers

(agents).

� The main drawback of the analytical approach is

that we have to simplify the model of the system

to obtain precise formulas for predictive dialing.

Fortunately, in many cases it seems that this sim-

pli�cation is not far from a real outbound dialing

process.

� On the other hand, simulation modeling re
ects

real physical processes in a system and therefore

can be easily understood by users. That will help

in adjusting system parameters and increase con-

�dence in the results of calculation.

1
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The simulation approach allows the use of col-

lected information related to call processing in

the past. In particular, the information could

be used for tuning the parameters of the sys-

tem (e.g., distribution functions) based on gath-

ered data. This approach makes it possible to

take into consideration current information about

the system (e.g., queue length, number of ready

agents).

� The main disadvantage of the simulation ap-

proach (especially when applied to the on-line

mode) is the necessity for essential computations

that must be performed in a limited time. How-

ever, there may be a tradeo� between precision

and the speed of computation.

In this paper we consider the simulation approach.

The analytical approach reported in [1, 5] is recom-

mended for systems with a large number of agents,

because in this case the system behavior is more sta-

tionary and may be described with analytical approx-

imations. For a small number of agents we suggest

using the simulation approach since it is closer to re-

ality and does not require essential computations.

II. Statement of the problem

The Campaign Manager scheme that will be re-

ferred to hereafter as the System is illustrated in Fig-

ure 1. It comprises the following elements: a call gen-

erator, a dialer, the process that waits for an answer,

a customer detector, a queue, and a set of agents. The

System operates as follows:

1. The call generator generates call inquiries using

a prede�ned strategy.

2. The dialer is a device that dials customers using

the phone number received from the generator.

3. The waiting process waits for an answer from the

customer's phone during some pre-de�ned time

(e.g., three dialing tones). If there is no answer

during this time interval the waiting process de-

cides that the customer is absent and the call

is released. If the customer's phone answers the

call is transferred to the Call Progress Detector

(CPD).

4. The detector detects the nature of the answer.

If it does not represent a live customer (e.g.,

fax or answering machine) then the call is re-

leased. Otherwise the call is delivered to the

agents' queue.

5. The agents' queue keeps calls in the order of their

arrival, i.e., it implements the procedure \�rst-in-

�rst-out" (FIFO). If an agent becomes free then

he/she receives the next call from the queue. If

there are no calls in a queue (the queue is empty)

and there are available agents, then the call is di-

rectly distributed to an available agent without

staying in the queue. A call in a queue may leave

the queue before being processed by an agent.

This happens when a customer does not wait and

hangs up. Sometimes such calls are called nui-

sance calls [6].

6. An agent processes the call received from the

queue. Typically, there are two types of calls:

short calls and long calls. Short calls correspond

to situations where a customer immediately ends

the conversation and hangs up. The typical du-

ration of short calls is one or two seconds. Long

calls take place when a customer agrees to take

part in conversation with the agent and this typ-

ically lasts a few minutes.

Figure 1: Outbound environment

The three elements Dialer, Waiting For Answer

process (WFA) and the Call Progress Detector (CPD)

(see Figure 1) cause some delay in call processing. We

will refer to these three elements as a call preprocessor.

In many call centers agents may also process inbound

calls that should be taking into consideration

The problem is to de�ne a strategy for call gen-

eration by the call generator in such a way that the

following conditions are met:

� All agents must have enough work, i.e., agent uti-

lization should not be less then some pre-speci�ed

rate �

min

.

� The rate of customers who have not waited for

processing and have left the queue should not be

higher then some speci�ed value Ar

max

. This

rate is usually referred to as an abandon rate.
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It should be noted that in general the task stated

above may not have a solution, i.e., the two require-

ments may not be satis�ed simultaneously. Therefore

we will solve two separate problems:

� The abandon rate should be maintained at an

admissible level Ar

max

, while maximizing agents'

utilization as much as possible.

� Agents' utilization is maintained at an admissible

level �

min

while the abandon ratio is as small as

possible.

At the moment of calculating the time for the next

call the generator has access to the following current

information about the System:

� The total number of agents in the System (note

that the number may vary). This value will be

denoted as m;

� The number of busy agents;

� The length of the agents' queue, i.e., number of

calls in the queue;

� The number of calls in the preprocessor;

� The time that the call is in the preprocessor (for

each call).

The generator also has access to some historical infor-

mation such as:

� Actual time for call processing by agent for each

call;

� Actual time for call processing by preprocessor

for each call;

� Actual time of staying in the queue of those

calls that left the queue without being served by

agents.

III. Model of the system

In this section we present a model for the System

described above. After that we formulate the criteria

of optimization during call generating.

A. Some assumptions

On the one hand the model is a simpli�ed represen-

tation of the whole system. On the other hand, the

model is a strict formal representation that allows for-

mal treatment and reasoning about its properties and

therefore about the properties of the whole system.

The model is described in terms of queuing system

theory [3] and its graphical representation is depicted

in Figure 2.

Figure 2: Model

In terms of queuing theory the model is represented

as a network of queues that consists of two nodes

called server centers that are connected sequentially.

One center corresponds to the agents' server and the

other one corresponds to the preprocessor.

In this paper we make the following assumptions

about the distribution functions of the system:

� Agents' service times have exponential distribu-

tion with parameters �

1

and �

2

:

f

1

(t) =

(

p

1

�

1

e

�

t

�

1

+

p

2

�

2

e

�

t

�

2

; if t � 0;

0; otherwise.

(1)

� An abandoned process has an exponential distri-

bution with parameter �;

� The preprocessor simply delays calls and relates

to a deterministic delay process with the delay

parameter �

3

.

Those who are familiar with Kendal's notation of

the queuing system [3] will note that the agents' sys-

tem is a multiserver system with general arrival time

and hyperexpotential service time: G/H2/m. The pre-

processor is a multiserver queuing system with loss.

We will use the following System parameters:

� �

1

{ the average time of processing long calls;

� �

2

{ the average time of processing short calls;

� p

1

{ the probability of long calls;

� p

2

= 1� p

1

{ the probability of short calls;

� M { the capacity of the preprocessor;
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� T

p

{ the delay in the preprocessor;

� p { the probability that a call will reach a liv-

ing customer and, therefore, will be placed in the

queue;

� � { the average time that customer waits in a

queue before abandonment;

� m { the total number of agents;

� �

min

{ the minimal agents' utilization rate;

� Ar

max

{ the maximal abandon rate.

We will also use the variables � and Ar to represent

the agents' utilization and abandon rate, respectively.

Graphically, a circle represents each agent in the

agents' center. A service element in the preprocessor

(e.g. a line) is also represented by a circle. Tokens

placed in circles and queue cells correspond to calls.

Therefore in Figure 2 we can see that three agents

are busy with three calls, two calls are waiting in the

queue, and two calls are in the preprocessor.

B. Criteria of optimization

Now we are prepared to give a precise statement

of the problem. Let t

0

be an initial moment of time.

At this moment we have the current number of busy

agents K

0

, current queue length Q

0

, and number of

calls in the preprocessor P

0

. Moreover, for each call in

the preprocessor we have the remainder time that the

call will stay in the preprocessor: tr

i

, 0 � i � P

0

. We

have to calculate the time t

1

� t

0

when the generator

will produce its next call so that two requirements are

met:

� the average abandonment rate must not exceed

some maximal rate: Ar � Ar

max

;

� the average agent utilization must not be less

then some minimal rate: � � �

min

.

It should be noted that in general the task stated

above may not have a solution. Indeed, as is known

from theory, for all types of queue systems in a stable

state the relationship between the average length of

queue Q and the utilization of agents � looks like the

curve shown in Figure 3.

Our requirements Ar � Ar

max

and �� � �

min

is

graphically represented by shaded rectangular. From

the graph we can see that it is possible when the curve

is not intersected the rectangular.

In this paper we will assume that there are two

cases:

Figure 3: Queue length and agent's utilization

� The abandon rate should be maintained at the

admissible level, while maximizing agent's uti-

lization as much as possible.

� Agents' utilization is maintained at the admissi-

ble level while the abandon ratio is as small as

possible.

IV. Predictive algorithm

In this section we present a method of calculation

for outbound calls. We give the necessary mathemat-

ical background and the algorithm derived from it.

A. Mathematical background

First, let us consider processes in an agents' ser-

vice center. We will estimate two random processes

of queue length and number of busy agents. The �rst

is closely related to abandon rate and the last is re-

lated to agent utilization.

The process for de�ning the average length of a

queue has the following form:

Q

t

= Q

0

+

t

Z

0

IfK

s

= mgdN

s

�D

t

� S

t

; (2)

where

1. Q

0

is a queue length at the initial moment of

time;

2. Control process N

s

makes the next jump at the

moment of entering the next call from a pre-

processor;
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3. The process D

t

=

t

R

0

�Q

s

ds represents the average

abandonment of a client from the queue.

4. The process S

t

=

t

R

0

mIfQ

s

> 0g(

p

1

�

1

+

p

2

�

2

)ds de-

scribes the average processing of the calls.

Here Ifxg is an indication function with Ifxg = 1

when x is true and Ifxg = 0 if x is false.

Less formally, the formula (2) can be explained as

follows. Q

t

denotes an average number of calls in the

queue at time t, i.e. Q

t

is a function of time. The �rst

member of the right side of the equation is the initial

number of calls at the beginning (t = 0). The second

member describes the number of calls which left the

queue to be distributed to agents within time interval

[0; t]. Roughly speaking, we sum all incoming calls

that are generated by the process N

s

but only when

all agents are busy (otherwise a new incoming call di-

rectly proceeds to an available agent without changing

the queue). The third member calculates all calls that

left the queue due to an abandon process (customer

hangs up). The number of abandoned calls depends

on the queue length Q

s

and parameter � characteriz-

ing the intensity of the call leaving. The last member

calculates calls that left the queue due to transfer-

ring to an agent. To accomplish this, we sum all calls

that have been processed by agents provided that the

queue at the time of �nishing the call is not empty.

The process describing the average number of busy

agents is as follows:

K

t

= K

0

+

t

R

0

IfQ

s

= 0; 0 � K

s

� mgdN

s

�

t

R

0

IfQ

s

= 0; 0 < K

s

� mgK

s

(

p

1

�

1

+

p

2

�

2

)ds:

(3)

The members of the equation have the following

meaning:

1. K

0

is the number of busy agents at the initial

moment of time;

2. The second term in the equation corresponds to

average number of the calls arriving from the pre-

processor and being delivered directly to an avail-

able agent (i.e., the queue is empty);

3. The third term corresponds to the average num-

ber of freeing agents after �nishing call processing

(long or short) provided that the queue is empty

(and therefore an agent will not be captured by

the next call).

Less formally, the formula (3) can be explained as

follows. It calculates the number of busy agents at

time t. To do so we calculate the arrived calls from the

dialer when the queue is empty and there are ready

agents (second member). We also subtract all calls

that have been completed by agents when the queue

is empty (otherwise the agent immediately receives a

new call from the queue).

Let us consider the behavior of the system in the

absence of incoming calls. The equations (2) and (3)

are transforming into the following:

Q

t

= Q

0

�D

t

� S

t

; (4)

and

K

t

= K

0

�

t

Z

0

IfQ

s

= 0; 0 � K

s

� mgK

s

(

p

1

�

1

+

p

2

�

2

)ds:

(5)

Let us derive the formula for abandon rate Ar.

Abandon rate is de�ned as a relation of the aban-

doned call to all calls that left the queue during some

time interval. Clearly 0 � Ar � 1. Let Q

1

�Q

0

= �Q

be the variation of the queue during the time interval

�T = t

1

� t

0

. Let also �Q

D

be the number of calls

that left the queue due to abandon during �T . Then

the average abandon rate for the interval �T can be

calculated as follows:

Ar =

�Q

D

�Q

(6)

To calculate the average agent's utilization �� at the

interval �T we will use the formula:

�� =

P

n

i=1

K

i

n �m

; (7)

where K

i

is the average number of busy agents at

the interval �t

i

= t

i+1

� t

i

and n is the number of

intervals �t

i

within the interval �T .

B. Method of calculation

B.1 General principles

The main idea of our approach is as follows. Start-

ing from time point t

0

we simulate the processes Q

t

and K

t

in the absence of calls from the generator.

Clearly, after a time these processes will decrease and

tend towards zero. At each step of the simulation we

estimate the abandon rate Ar. Based on this estima-

tion we determine the optimal time for generating a

new call by the generator.
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In simulation of these processes we will use the so-

called �xed-incremented time advance approach [2] for

advancing the simulation clock. According to this ap-

proach, the simulation clock is advanced in moments

of exactly �t time units for some appropriate choice of

�t. After each update of the simulation clock we cal-

culate increments of K

t

and Q

t

and update them. We

also calculate related parameters like abandon rate

and agent utilization. The value of �t is chosen to

be small enough to make the probability of multiple

events (e.g. arrivals of calls) be negligible, yet large

enough that processing time is not excessive. There-

fore there should be a reasonable trade-o� based on

practical experience.

The �xed-incremented time advance approach

seems to be more preferable for our case with respect

to the next-event time advance approach because we

need on-the-
y simulation to estimate the time inter-

val comparable with the next event time.

B.2 Generating random events

In simulation we will need to generate events having

some distribution function. We will assume that we

can generate random variations of U [0; 1] within the

interval [0; 1]. Let F (t) = PfT � tg be the continuous

distribution function of random variable T . Then the

conditional probability of the occurrence of an event

within the time interval [t; t+ dt] is

PfT 2 [t; t+ dt] j T � tg =

dF (t)

1� F (t)

: (8)

Then in order to generate an event in interval

[t; t + �] for small enough � we calculate interval

� =

�F

1�F (t)

. Clearly, � � 1. Then generate random

value x = U [0; 1] and check whether x � �. If yes,

than we generate event. Otherwise, not.

It is not hard to see that for the case of exponential

distribution, i.e. F (t) = 1� e

�

t

�

, we have

PfT 2 [t; t+ dt] j T � tg =

1

�

dt (9)

That is in the case of exponential distribution the

probability does not depend of the time.

B.3 Algorithm for simulation Q

t

and K

t

The algorithm of simulation processes Q

t

and K

t

works as follows. At initial moment it receives current

value of queue length Q

0

and number of busy agents

K

0

. The processes are calculated by sequence of steps,

each step being corresponded to time increment �t.

At each step processes Q

t

and K

t

are calculated as a

meaning of N realizations of discrete processes Q

i

(t)

and K

i

(t), i 2 f1; :::; Ng. Each realization of Q

i

(t)

and K

i

(t) is calculated according to equations (4) and

(5). The algorithm stops when processes reach the

state where target criteria is satis�ed.

B.4 Method for simpli�ed case

To better understand the proposed method, let us

start with a simpli�ed case. Consider a model derived

from the general model (see Figure 2) by removing the

preprocessor center. The resulting model is depicted

in Figure 4.

Figure 4: Simpli�ed model

Figure 5: Queue length, K

0

= 10; Q

0

= 2; N = 1000

We will observe the system behavior in the absence

of incoming calls starting from the time t

0

. To ac-

complish this we simulate the processes Q

t

and K

t

starting from current values Q

0

and K

0

according to
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formulas (4) and (5), respectively. In particular, after

each �t we calculate increments �Q and �K, new

values of Q

t

and K

t

. Clearly they will be decreased.

On Figures 5 and 6 the processes Q

t

and K

t

are

depicted. In this experiment we supply the system

with the following parameters: m = 10, p

1

= 0:7,

p

2

= 0:3, �

1

= 120, �

2

= 5, � = 0:1. The initial values

are K

0

= 10, Q

0

= 2. The number of realization is

N = 1000.

Figure 6: Busy agents, K

0

= 10; Q

0

= 2; N = 1000

We will try to �nd the \optimal" moment for the

generation of the next call using processes Q

t

and K

t

.

It is clear that in stationary case there will be an op-

timal queue length Q

opt

. Suppose we reach time t

1

where the length of the queue is equal to optimal Q

opt

.

The next call should be generated at time t

2

, which

is induced by one call

1

, as in the following:

Q(t

1

)�Q(t

2

) +m�K(t

2

) = 1 (10)

Here we use a 
uid approximation considering that

the part of the call m � K(t

2

) directly transfers to

agents and the rest 1 � (m + K(t

2

)) is placed in the

queue

2

. The optimum of the interval [t

1

; t

2

] means

that during the interval the abandon rate is equal to

the maximal value Ar

max

:

Ar(t

1

; t

2

) =

�Q

D

�Q+m�K(t

2

)

� Ar

max

(11)

Here we also suppose that part of the new call

m�K(t

2

) is transferred to agents and therefore im-

proves the abandon rate.

1

We can also use a 
uid approximation and set call length

equal to hit ratio p bearing in mind that this part of the call

passes through the dialer and 1� p part of the call is cancelled

2

Clearly, in his case m�K(t

2

) � 1.

Figure 7: Finding the optimal interval. Q

0

� Q

opt

.

Therefore to �nd the optimal time t

2

for generating

the next call we move the interval [t

1

; t

2

] from 0 to

the right until conditions (10) and (11) are satis�ed.

Note that the length of the interval [t

1

; t

2

] will vary.

The time t

2

will be the time for the next call.

All of the above assumes that the initial queue

length is greater than optimal, i.e., Q

0

� Q

opt

. Sup-

pose that Q

0

� Q

opt

. Let us continue the curve of

the queue to the \past", see Figure 8, and �nd the

optimal interval [t

1

; t

2

]. There may be two cases.

Figure 8: Finding optimal interval. Q

0

� Q

opt

.
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Case 1: t

1

� 0; t

2

� 0 (Figure 8(i)). In this case the

point t

2

is the optimal point.

Case 2: t

1

; t

2

� 0 (Figure 8(ii)). In this case optimal

time t

2

is in the past. But we can not generate calls

in the past and therefore all we can do is to generate

the call immediately

3

.

Now, taking into consideration our inability to gen-

erate more than one call, we suggest the following

procedure.

1. Simulate processes Q

t

and K

t

starting from the

initial values Q

0

+1 and K

0

, respectively.

2. When we reach some t

0

such that Q(t

0

) = Q

0

,

remember t

0

.

3. Find the optimal interval [t

1

; t

2

] as de�ned above.

4. If it is impossible, i.e., if Ar(t

1

; t

2

) > Ar

max

for

all t

1

and t

2

, take t

opt

= t

0

. If we �nd [t

1

; t

2

] such

that t

2

� t

0

then t

opt

= t

2

� t

0

. If t

2

� t

0

then

t

opt

= t

0

.

If we want to optimize (i.e. maximize) agents' uti-

lization to some boundary value �

min

while the aban-

don rate is as low as possible, we can also employ the

technique described above. However, instead of us-

ing the formula (11), we calculate agents' utilization

within the interval [t

1

; t

2

] as follows:

�(t

1

; t

2

) =

P

M

i=0

K(t

i

)

M

� �

min

(12)

where the interval [t

1

; t

2

] hasM intervals �t with time

points t

1

; t

2

; :::; t

(M+1)

, t

1

= t

1

, t

2

= t

(M+1)

.

B.5 Method for general case

Let us consider the general case. The model in-

cludes the preprocessor that may contain calls at the

initial point of time. These calls should be taken into

consideration during simulation.

Let us modify the above methods as follows:

1. During simulation of processes Q

t

and K

t

we

will count arriving calls from the preprocessor.

More speci�cally, each call in the preprocessor

is equipped with the time of entry into the pre-

processor. At each time t

i

we check whether the

call should leave the preprocessor or not.

3

If we have possibility to generate more then one call at a

time, we can generate Q

opt

�Q

0

= Q(t

2

)�Q(t

0

) � 1 calls. But

this is contradicts our assumption about ability to generate no

more then one call at a time.

2. The transfer of a call from the preprocessor to the

queue can be modeled by a generator of random

variantes without any problems. Alternatively,

we can exploit 
uid approximation and change

the queue Q

0

(t

i

) = Q(t

i

) + (p� (m�K(t

i

))) and

the number of busy agents K

0

(t

i

) = m if m �

K(t

i

) � p. Ifm�K(t

i

) � p thenK

0

(t

i

) = K(t

i

)+

p and Q(t

i

) is not changed.

3. When the last call from the preprocessor is trans-

ferred to to queue (or cancelled) at the time t

f

the simulation continues similarly as in simpli-

�ed case. At this stage we obtain the optimal

time t

opt

.

4. Finally, calculate the resulting time as follows:

t

0

opt

= t

f

+ t

opt

� T

p

if t

f

+ t

opt

� T

p

. Other-

wise we take t

0

opt

= t

0

and generate the next call

immediately.

Figure 9: Queue length, K

0

=10; Q

0

=2; N=1000

In Figure 9 we show the process Q

t

in the system

with three cals in the preprocessor. Only two calls

reached the queue while the other one has been can-

celed (e.g., no answer) in the preprocessor.

V. Conclusion

In this paper we presented simulation approaches

to outbound call generation to be used in predictive

dialers. We focused on a simpli�ed case where the call

processing and call waiting time have exponential dis-

tribution and the preprocessor possesses a �xed delay.

We can point out some direction for further devel-

oping this approach:
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1. Moving from idealistic distribution functions to

more realistic distribution functions. There may

be two possibilities:

� Selecting the most appropriate distribution

function from those widely used in practice

(e.g. normal, Erlang, Gamma, Weibull) and

�tting the parameters of the distribution.

� Making use of empirical distribution built

on previous experience.

2. Developing methods of adaptive control over sys-

tem parameters and distribution functions, in

particular. For instance that would be of great

importance when we do not know the precise to-

tal number of agents (e.g., agents are also in-

volved in other activities such as processing in-

bound calls).
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